X
تبلیغات
رایتل

مدلسازی و شبیه¬سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

شنبه 29 آبان 1395

مدلسازی و شبیه¬سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع

توجه :

شما می توانید با خرید این محصول فایل " قلق های پایان نامه نویسی (از عنوان تا دفاع)" را به عنوان هدیه دریافت نمایید.

چکیده

در سالهای اخیر، مسایل جدی کیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، که بدلیل شدت استفاده از تجهیزات الکترونیکی حساس در فرآیند اتوماسیون است. وقتی که دامنه و مدت افت ولتاژ، از آستانه حساسیت تجهیزات مشتریان فراتر رود ، ممکن است این تجهیزات درست کار نکند، و موجب توقف تولید و هزینه­ی قابل توجه مربوطه گردد. بنابراین فهم ویژگیهای افت ولتاژها در پایانه های تجهیزات لازم است. افت ولتاژها عمدتاً بوسیله خطاهای متقارن یا نامتقارن در سیستمهای انتقال یا توزیع ایجاد می­شود. خطاها در سیستمهای توزیع معمولاً تنها باعث افت ولتاژهایی در باسهای مشتریان محلی می­شود. تعداد و ویژگیهای افت ولتاژها که بعنوان عملکرد افت ولتاژها در باسهای مشتریان شناخته می­شود، ممکن است با یکدیگر و با توجه به مکان اصلی خطاها فرق کند. تفاوت در عملکرد افت ولتاژها یعنی، دامنه و بویژه نسبت زاویه فاز، نتیجه انتشار افت ولتاژها از مکانهای اصلی خطا به باسهای دیگر است. انتشار افت ولتاژها از طریق اتصالات متنوع ترانسفورماتورها، منجر به عملکرد متفاوت افت ولتاژها در طرف ثانویه ترانسفورماتورها می­شود. معمولاً، انتشار افت ولتاژ بصورت جریان یافتن افت ولتاژها از سطح ولتاژ بالاتر به سطح ولتاژ پایین­تر تعریف می­شود. بواسطه امپدانس ترانسفورماتور کاهنده، انتشار در جهت معکوس، چشمگیر نخواهد بود. عملکرد افت ولتاژها در باسهای مشتریان را با مونیتورینگ یا اطلاعات آماری می­توان ارزیابی کرد. هر چند ممکن است این عملکرد در پایانه­های تجهیزات، بواسطه اتصالات سیم­پیچهای ترانسفورماتور مورد استفاده در ورودی کارخانه، دوباره تغییر کند. بنابراین، لازم است بصورت ویژه انتشار افت ولتاژ از باسها به تاسیسات کارخانه از طریق اتصالات متفاوت ترانسفورماتور سرویس دهنده، مورد مطالعه قرار گیرد. این پایان نامه با طبقه بندی انواع گروههای برداری ترانسفورماتور و اتصالات آن و همچنین دسته بندی خطاهای متقارن و نامتقارن به هفت گروه، نحوه انتشار این گروهها را از طریق ترانسفورماتورها با مدلسازی و شبیه­سازی انواع اتصالات سیم پیچها بررسی می­کند و در نهایت نتایج را ارایه می­نماید و این بررسی در شبکه تست چهارده باس IEEE برای چند مورد تایید می­شود.

کلید واژه­ها: افت ولتاژ، مدلسازی ترانسفورماتور، اتصالات ترانسفورماتور، اشباع، شبیه سازی.

Key words: Voltage Sag, Transformer Modeling, Transformer Connection, Saturation, Simulation.

فهرست مطالب

1-1 مقدمه. 2

1-2 مدلهای ترانسفورماتور. 3

1-2-1 معرفی مدل ماتریسی Matrix Representation (BCTRAN Model) 4

1-2-2 مدل ترانسفورماتور قابل اشباع Saturable Transformer Component (STC Model) 6

1-2-3 مدلهای بر مبنای توپولوژی Topology-Based Models. 7

2- مدلسازی ترانسفورماتور. 13

2-1 مقدمه. 13

2-2 ترانسفورماتور ایده آل.. 14

2-3 معادلات شار نشتی.. 16

2-4 معادلات ولتاژ. 18

2-5 ارائه مدار معادل.. 20

2-6 مدلسازی ترانسفورماتور دو سیم پیچه. 22

2-7 شرایط پایانه ها (ترمینالها). 25

2-8 وارد کردن اشباع هسته به شبیه سازی.. 28

2-8-1 روشهای وارد کردن اثرات اشباع هسته. 29

2-8-2 شبیه سازی رابطه بین و ........... 33

2-9 منحنی اشباع با مقادیر لحظهای.. 36

2-9-1 استخراج منحنی مغناطیس کنندگی مدار باز با مقادیر لحظهای.. 36

2-9-2 بدست آوردن ضرایب معادله انتگرالی.. 39

2-10 خطای استفاده از منحنی مدار باز با مقادیر rms. 41

2-11 شبیه سازی ترانسفورماتور پنج ستونی در حوزه زمان.. 43

2-11-1 حل عددی معادلات دیفرانسیل.. 47

2-12 روشهای آزموده شده برای حل همزمان معادلات دیفرانسیل.. 53

3- انواع خطاهای نامتقارن و اثر اتصالات ترانسفورماتور روی آن.. 57

3-1 مقدمه. 57

3-2 دامنه افت ولتاژ. 57

3-3 مدت افت ولتاژ. 57

3-4 اتصالات سیم پیچی ترانس.... 58

3-5 انتقال افت ولتاژها از طریق ترانسفورماتور. 59

§3-5-1 خطای تکفاز، بار با اتصال ستاره، بدون ترانسفورماتور. 59

§3-5-2 خطای تکفاز، بار با اتصال مثلث، بدون ترانسفورماتور. 59

§3-5-3 خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 60

§3-5-4 خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 60

§3-5-5 خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 60

§3-5-6 خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 60

§3-5-7 خطای دو فاز به هم، بار با اتصال ستاره، بدون ترانسفورماتور. 61

§3-5-8 خطای دو فاز به هم، بار با اتصال مثلث، بدون ترانسفورماتور. 61

§3-5-9 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع دوم. 61

§3-5-10 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع دوم. 61

§3-5-11 خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع سوم. 62

§3-5-12 خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع سوم. 62

§3-5-13 خطاهای دو فاز به زمین.. 62

3-6 جمعبندی انواع خطاها 64

3-7 خطای Type A ، ترانسفورماتور Dd.. 65

3-8 خطای Type B ، ترانسفورماتور Dd.. 67

3-9 خطای Type C ، ترانسفورماتور Dd.. 69

3-10 خطاهای Type D و Type F و Type G ، ترانسفورماتور Dd.. 72

3-11 خطای Type E ، ترانسفورماتور Dd.. 72

3-12 خطاهای نامتقارن ، ترانسفورماتور Yy.. 73

3-13 خطاهای نامتقارن ، ترانسفورماتور Ygyg.. 73

3-14 خطای Type A ، ترانسفورماتور Dy.. 73

3-15 خطای Type B ، ترانسفورماتور Dy.. 74

3-16 خطای Type C ، ترانسفورماتور Dy.. 76

3-17 خطای Type D ، ترانسفورماتور Dy.. 77

3-18 خطای Type E ، ترانسفورماتور Dy.. 78

3-19 خطای Type F ، ترانسفورماتور Dy.. 79

3-20 خطای Type G ، ترانسفورماتور Dy.. 80

3-21 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type A شبیه سازی با PSCAD.. 81

شبیه سازی با برنامه نوشته شده. 83

3-22 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type B شبیه سازی با PSCAD.. 85

شبیه سازی با برنامه نوشته شده. 87

3-23 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type C شبیه سازی با PSCAD.. 89

شبیه سازی با برنامه نوشته شده. 91

3-24 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type D شبیه سازی با PSCAD.. 93

شبیه سازی با برنامه نوشته شده. 95

3-25 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type E شبیه سازی با PSCAD.. 97

شبیه سازی با برنامه نوشته شده. 99

3-26 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type F شبیه سازی با PSCAD.. 101

شبیه سازی با برنامه نوشته شده. 103

3-27 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای Type G شبیه سازی با PSCAD.. 105

شبیه سازی با برنامه نوشته شده. 107

3-28 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای Type D در باس 5. 109

3-29 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای Type G در باس 5. 112

3-30 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای Type A در باس 5. 115

4- نتیجه گیری و پیشنهادات... 121

مراجع. 123

فهرست شکلها

شکل (1-1) مدل ماتریسی ترانسفورماتور با اضافه کردن اثر هسته

صفحه 5

شکل (1-2) ) مدار ستاره­ی مدل ترانسفورماتور قابل اشباع

صفحه 6

شکل (1-3) ترانسفورماتور زرهی تک فاز

صفحه 9

شکل (1-4) مدار الکتریکی معادل شکل (1-3)

صفحه 9

شکل (2-1) ترانسفورماتور

صفحه 14

شکل (2-2) ترانسفورماتور ایده ال

صفحه 14

شکل (2-3) ترانسفورماتور ایده ال بل بار

صفحه 15

شکل (2-4) ترانسفورماتور با مولفه های شار پیوندی و نشتی

صفحه 16

شکل (2-5) مدرا معادل ترانسفورماتور

صفحه 20

شکل (2-6) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه

صفحه 24

شکل (2-7) ترکیب RL موازی

صفحه 26

شکل (2-8) ترکیب RC موازی

صفحه 27

شکل (2-9) منحنی مغناطیس کنندگی مدار باز ترانسفورماتور

صفحه 30

شکل (2-10) رابطه بین و

صفحه 30

شکل (2-11) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه با اثر اشباع

صفحه 32

شکل (2-12) رابطه بین و

صفحه 32

شکل (2-13) رابطه بین و

صفحه 32

شکل (2-14) منحنی مدار باز با مقادیر rms

صفحه 36

شکل (2-15) شار پیوندی متناظر شکل (2-14) سینوسی

صفحه 36

شکل (2-16) جریان لحظه ای متناظر با تحریک ولتاژ سینوسی

صفحه 36

شکل (2-17) منحنی مدار باز با مقادیر لحظه­ای

صفحه 40

شکل (2-18) منحنی مدار باز با مقادیر rms

صفحه 40

شکل (2-19) میزان خطای استفاده از منحنی rms

صفحه 41

شکل (2-20) میزان خطای استفاده از منحنی لحظه­ای

صفحه 41

شکل (2-21) مدار معادل مغناطیسی ترانسفورماتور سه فاز سه ستونه

صفحه 42

شکل (2-22) مدار معادل الکتریکی ترانسفورماتور سه فاز سه ستونه

صفحه 43

شکل (2-23) مدار معادل مغناطیسی ترانسفورماتور سه فاز پنج ستونه

صفحه 44

شکل (2-24) ترانسفورماتور پنج ستونه

صفحه 45

شکل (2-25) انتگرالگیری در یک استپ زمانی به روش اولر

صفحه 47

شکل (2-26) انتگرالگیری در یک استپ زمانی به روش trapezoidal

صفحه 49

شکل (3-1) دیاگرام فازوری خطاها

صفحه 62

شکل (3-2) شکل موج ولتاژ Vab

صفحه 63

شکل (3-3) شکل موج ولتاژ Vbc

صفحه 63

شکل (3-4) شکل موج ولتاژ Vca

صفحه 63

شکل (3-5) شکل موج ولتاژ Vab

صفحه 63

شکل (3-6) شکل موج جریان iA

صفحه 64

شکل (3-7) شکل موج جریان iB

صفحه 64

شکل (3-8) شکل موج جریان iA

صفحه 64

شکل (3-9) شکل موج جریان iA

صفحه 64

شکل (3-10) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 65

شکل (3-11) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 68

شکل (3-12) شکل موجهای جریان ia , ib , ic

صفحه 68

شکل (3-13) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شکل (3-14) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 69

شکل (3-15) شکل موجهای جریان , iB iA

صفحه 69

شکل (3-16) شکل موج جریان iA

صفحه 70

شکل (3-16) شکل موج جریان iB

صفحه 70

شکل (3-17) شکل موج جریان iC

صفحه 70

شکل (3-18) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 71

شکل (3-19) شکل موجهای جریان ia , ib , ic

صفحه 71

شکل (3-20) شکل موجهای ولتاژ Va , Vb , Vc

صفحه 73

شکل (3-21) شکل موجهای جریان ia , ib , ic

صفحه 73

شکل (3-22) شکل موجهای جریان ia , ib , ic

صفحه 74

شکل (3-23) شکل موج ولتاژ Va

صفحه 74

شکل (3-24) شکل موج ولتاژ Vb

صفحه 74

شکل (3-25) شکل موج ولتاژ Vc

صفحه 74

شکل (3-26) شکل موج جریانiA

صفحه 74

شکل (3-27) شکل موج جریان iB

صفحه 74

شکل (3-28) شکل موج جریان iC

صفحه 74

شکل (3-29) شکل موج جریانiA

صفحه 75

شکل (3-30) شکل موج جریان iB

صفحه 75

شکل (3-31) موج جریان iC

صفحه 75

شکل (3-32) شکل موج جریانiA

صفحه 75

شکل (3-33) شکل موج جریان iB

صفحه 75

شکل (3-34) شکل موج جریان iC

صفحه 75

شکل (3-35) شکل موج ولتاژ Va

صفحه 76

شکل (3-36) شکل موج ولتاژ Vb

صفحه 76

شکل (3-37) شکل موج ولتاژ Vc

صفحه 76

شکل (3-38) شکل موج جریانiA

صفحه 76

شکل (3-39) شکل موج جریان iB

صفحه 76

شکل (3-40) شکل موج جریان iC

صفحه 76

شکل (3-41) شکل موج جریانiA

صفحه 76

شکل (3-42) شکل موج جریان iB

صفحه 76

شکل (3-43) شکل موج جریان iC

صفحه 76

شکل (3-44) شکل موج ولتاژ Va

صفحه 77

شکل (3-45) شکل موج ولتاژ Vb

صفحه 77

شکل (3-46) شکل موج ولتاژ Vc

صفحه 77

شکل (3-47) شکل موج جریانiA

صفحه 77

شکل (3-48) شکل موج جریان iB

صفحه 77

شکل (3-49) شکل موج جریان iC

صفحه 77

شکل (3-50) شکل موج جریانiA

صفحه 77

شکل (3-51) شکل موج جریان iB

صفحه 77

شکل (3-52) شکل موج جریان iC

صفحه 77

شکل (3-53) شکل موج ولتاژ Va

صفحه 78

شکل (3-54) شکل موج ولتاژ Vb

صفحه 78

شکل (3-55) شکل موج ولتاژ Vc

صفحه 78

شکل (3-56) شکل موج جریانiA

صفحه 78

شکل (3-57) شکل موج جریان iB

صفحه 78

شکل (3-58) شکل موج جریان iC

صفحه 78

شکل (3-59) شکل موج جریانiA

صفحه 78

شکل (3-60) شکل موج جریان iB

صفحه 78

شکل (3-61) شکل موج جریان iC

صفحه 78

شکل (3-62) شکل موج ولتاژ Va

صفحه 79

شکل (3-63) شکل موج ولتاژ Vb

صفحه 79

شکل (3-64) شکل موج ولتاژ Vc

صفحه 79

شکل (3-65) شکل موج جریانiA

صفحه 79

شکل (3-66) شکل موج جریان iB

صفحه 79

شکل (3-67) شکل موج جریان iC

صفحه 79

شکل (3-68) شکل موج جریانiA

صفحه 79

شکل (3-69) شکل موج جریان iB

صفحه 79

شکل (3-70) شکل موج جریان iC

صفحه 79

شکل (3-71) شکل موج ولتاژ Va

صفحه 80

شکل (3-72) شکل موج ولتاژ Vb

صفحه 80

شکل (3-73) شکل موج ولتاژ Vc

صفحه 80

شکل (3-74) شکل موج جریانiA

صفحه 80

شکل (3-75) شکل موج جریان iB

صفحه 78

شکل (3-76) شکل موج جریان iC

صفحه 80

شکل (3-77) شکل موج جریانiA

صفحه 80

شکل (3-78) شکل موج جریان iB

صفحه 80

شکل (3-79) شکل موج جریان iC

صفحه 80

شکل (3-80) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شکل (3-81) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 81

شکل (3-82) شکل موجهای جریان) (kV با PSCAD

صفحه 82

شکل (3-83) شکل موجهای جریان) (kV با PSCAD

صفحه 82

شکل (3-84) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شکل (3-85) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 83

شکل (3-86) شکل موجهای جریان با برنامه نوشته شده

صفحه 84

شکل (3-87) شکل موجهای جریان با برنامه نوشته شده

صفحه 84

شکل (3-88) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شکل (3-89) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 85

شکل (3-90) شکل موجهای جریان) (kV با PSCAD

صفحه 86

شکل (3-91) شکل موجهای جریان) (kV با PSCAD

صفحه 86

شکل (3-92) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شکل (3-93) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 87

شکل (3-94) شکل موجهای جریان با برنامه نوشته شده

صفحه 88

شکل (3-95) شکل موجهای جریان با برنامه نوشته شده

صفحه 88

شکل (3-96) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شکل (3-97) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 89

شکل (3-98) شکل موجهای جریان) (kV با PSCAD

صفحه 90

شکل (3-99) شکل موجهای جریان) (kV با PSCAD

صفحه 90

شکل (3-100) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شکل (3-101) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 91

شکل (3-102) شکل موجهای جریان با برنامه نوشته شده

صفحه 92

شکل (3-103) شکل موجهای جریان با برنامه نوشته شده

صفحه 92

شکل (3-104) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شکل (3-105) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 93

شکل (3-106) شکل موجهای جریان) (kV با PSCAD

صفحه 94

شکل (3-107) شکل موجهای جریان) (kV با PSCAD

صفحه 94

شکل (3-108) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شکل (3-109) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 95

شکل (3-110) شکل موجهای جریان با برنامه نوشته شده

صفحه 96

شکل (3-111) شکل موجهای جریان با برنامه نوشته شده

صفحه 96

شکل (3-112) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 97

شکل (3-113) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 97

شکل (3-114) شکل موجهای جریان) (kV با PSCAD

صفحه 98

شکل (3-115) شکل موجهای جریان) (kV با PSCAD

صفحه 98

شکل (3-116) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شکل (3-117) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 99

شکل (3-118) شکل موجهای جریان با برنامه نوشته شده

صفحه 100

شکل (3-119) شکل موجهای جریان با برنامه نوشته شده

صفحه 100

شکل (3-120) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شکل (3-121) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 101

شکل (3-122) شکل موجهای جریان) (kV با PSCAD

صفحه 102

شکل (3-123) شکل موجهای جریان) (kV با PSCAD

صفحه 102

شکل (3-124) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شکل (3-125) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 103

شکل (3-126) شکل موجهای جریان با برنامه نوشته شده

صفحه 104

شکل (3-127) شکل موجهای جریان با برنامه نوشته شده

صفحه 104

شکل (3-128) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شکل (3-129) شکل موجهای ولتاژ) (kV با PSCAD

صفحه 105

شکل (3-130) شکل موجهای جریان) (kV با PSCAD

صفحه 106

شکل (3-131) شکل موجهای جریان) (kV با PSCAD

صفحه 106

شکل (3-132) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شکل (3-133) شکل موجهای ولتاژ با برنامه نوشته شده

صفحه 107

شکل (3-134) شکل موجهای جریان با برنامه نوشته شده

صفحه 108

شکل (3-135) شکل موجهای جریان با برنامه نوشته شده

صفحه 108

شکل (3-136) شکل موجهای ولتاژ) (kV

صفحه 109

شکل (3-137) شکل موجهای ولتاژ) (kV

صفحه 110

شکل (3-138) شکل موجهای جریان (kA)

صفحه 111

شکل (3-139) شکل موجهای ولتاژ) (kV

صفحه 112

شکل (3-140) شکل موجهای ولتاژ) (kV

صفحه 113

شکل (3-141) شکل موجهای جریان (kA)

صفحه 114

شکل (3-142) شکل موجهای جریان (kA)

صفحه 115

شکل (3-143) شکل موجهای جریان (kA)

صفحه 116

شکل (3-144) شکل موجهای جریان (kA)

صفحه 117

شکل (3-145) شبکه 14 باس IEEE

صفحه 118



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

شبیه سازی الگوریتم ایمنی مصنوعی مبتنی بر پیش بینی پایداری ولتاژ در سیستم قدرت

شنبه 22 آبان 1395
فایل زیر شبیه سازی در زمینه الگوریتم ایمنی مصنوعی مبتنی بر پیش بینی پایداری ولتاژ در سیستم قدرت می باشد. شبیه سازی ارائه شده برای دو سیستم قدرت چهار ماشینه و تک ماشینه ارائه شده است. در این زمینه مقالات زیادی منتشر شده است که عنوان انگلیسی فوق به صورت زیر می باشد: Artificial Immune-Based For Voltage Stability Prediction In Power System درشکل کنار همگرایی را نشان می دهد. انالیزهای شبیه سازی براساس مقادیر ویژه است. ...



برای دیدن ادامه مطلب اینجا را کلیک کنید

پایش وضعیت موتورهای الکتریکی توسط کنترل ولتاژ و جریان

یکشنبه 9 آبان 1395
پایش وضعیت موتورهای الکتریکی توسط کنترل ولتاژ و جریان

پایش-وضعیت-موتورهای-الکتریکی-توسط-کنترل-ولتاژ-و-جریانپروژه و پایان نامه رشته مهندسی برق قدرت، چکیده: این پروژه با هدف بررسی و تدوین روش نگهداری و تعمیرات پیشگویانه یا پایش وضعیت بر روی موتورهای الکتریکی توسط کنترل ولتاژ و جریان و مقایسه آن باسیستم های دیگر پایش وضعیت مانند سیستم ارتعاشات و سایر روشها می باشد این پروژه از شش فصل تشکیل یافته که در ...دانلود فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

خازن گذاری شبکه توزیع با هدف کاهش تلفات انرژی و بهبود پروفیل ولتاژ به کمک الگوریتم ژنتیک

یکشنبه 9 آبان 1395
خازن گذاری شبکه توزیع با هدف کاهش تلفات انرژی و بهبود پروفیل ولتاژ به کمک الگوریتم ژنتیک

خازن-گذاری-شبکه-توزیع-با-هدف-کاهش-تلفات-انرژی-و-بهبود-پروفیل-ولتاژ-به-کمک-الگوریتم-ژنتیکپروژه و پایان نامه کامل رشته مهندسی برق، چکیده: بیشترین سهم تلفات در یک سیستم قدرت مربوط به بخش توزیع است که همواره مورد توجه بوده است. از جمله عوامل مهم در افزایش تلفات در شبکه توزیع وجود جریان های راکتیو است. متداولترین روش جبران توان راکتیو در سیستم قدرت استفاده از خازن های موازی می باشد. از ...دانلود فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

تحقیق در مورد پایداری ولتاژ

یکشنبه 18 مهر 1395
لینک پرداخت و دانلود *پایین مطلب * فرمت فایل :Word ( قابل ویرایش و آماده پرینت ) تعداد صفحه46 فهرست مطالب مقدمه ای بر پایداری ولتاژ پایداری ولتاژ چیست؟   - تحلیل بوسیله پخش بار:   - به کار بردن منحنی های P-V و V-Q   - اندیس های کارایی   - آستانه توان راکتیو:   - آستانه های بارگذاری   ب: چرا ناپایداری ولتاژ بروز کرده است؟   با تغییر ساختار جدیدی که در سالهای اخیر در   اثرات آن.   سیستمهای قدرت پدید آمده که باعث میشود ئاحدهای تولیدی توان الکتریکی هرچه بیشتری را از خطوط انتقال عبور دهند، انتظار می رود شاهد فروپاشی ولتاژ گسترده تر و بیشتر سیستم های قدرت باشیم. برای مثال عبور توان بیش از حد یک خط انتقال باعث افت ولتاژ بیش از حد و کاهش ظرفیت انتقال توان الکتریکی به بخش مشخصی از سیستم قدرت گردد. (برای کمک کرده به واحدهای تولیدی در م ...



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: تحقیق، مورد، پایداری، ولتاژ

تحقیق در مورد نوسانات ولتاژ

پنج‌شنبه 15 مهر 1395
لینک پرداخت و دانلود *پایین مطلب * فرمت فایل :Word ( قابل ویرایش و آماده پرینت ) تعداد صفحه54 فهرست مطالب فصل اول   فهرست   مقدمه   نوسانات ولتاژ ناشی از بارهای مختلف   بررسی اثرات tov بر یک شبکه نمونه   اضافه ولتاژهای ناشی از کلید زنی   اضافه ولتاژ های موجی   بررسی قرار دادن برقگیر در سمت فشار ضعیف   مقدمه   بحث نوسانات ولتاژو تاثییرات موقتی آن روی سیستم برق شاید در ابتدا به علت موقتی بودن این اثرات از اهمیت زیادی برخوردار نباشد ولی با دقت در این موضوع که این نوسانات با عبور از روی شبکه برق و گذر کردن از روی تجهیزات و وسایل حساس برقی و با توجه به دامنه بالای این اثر می تواند صدمات جبران ناپذیری به تجهیزات وارد کرده و باعث می گردد اهمیت این موضوع دو صد چندان گردد و حتی می تواند باعث ناپایداری خط عبوری انرژی گشته و صدمات جبران ناپ ...



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: تحقیق، مورد، نوسانات، ولتاژ

شبیه سازی الگوریتم ایمنی مصنوعی مبتنی بر پیش بینی پایداری ولتاژ در سیستم قدرت

چهارشنبه 7 مهر 1395
فایل زیر شبیه سازی در زمینه الگوریتم ایمنی مصنوعی مبتنی بر پیش بینی پایداری ولتاژ در سیستم قدرت می باشد. شبیه سازی ارائه شده برای دو سیستم قدرت چهار ماشینه و تک ماشینه ارائه شده است. در این زمینه مقالات زیادی منتشر شده است که عنوان انگلیسی فوق به صورت زیر می باشد: Artificial Immune-Based For Voltage Stability Prediction In Power System درشکل کنار همگرایی را نشان می دهد. انالیزهای شبیه سازی براساس مقادیر ویژه است. ...



برای دیدن ادامه مطلب اینجا را کلیک کنید

گزاش کارآموزی تنظیم کننده های ولتاژ ، ژنراتور ، ماشین AC

پنج‌شنبه 1 مهر 1395
دانلود گزاش کارآموزی تنظیم کننده های ولتاژ ، ژنراتور ، ماشین AC فرمت فایل: ورد قابل ویرایش تعداد صفحات: 165         فهرست ماشینهای ac نقش acدر سنکرون ها اتصالات در سیستم  ac مبدل های ac قسمتهای مختلف یک تنظیم کننده مباحث کلی در مورد فیلتر تقویت کننده dc مدار محدود کننده مدار تنظیم کننده های ولتاژ کلیدی ژنراتورها تنظیم فلوی آب تعمیرات برنامه ریزی شده توربین اندازه گیریهای کلیرنس برنامه ریزی بازرسی با بورسکوپ بازرسی احتراق دمونتاژوالو چک فلوی هوای نوزل سوخت حدهای بازرسی در مورد فلواسلیو ونتاژ ...



برای دیدن ادامه مطلب اینجا را کلیک کنید

ارزیابی پایداری ولتاژ در سیستم قدرت کنترل با استفاده از ترکیب FACTS معادل شبکه منحصر به فرد

پنج‌شنبه 1 مهر 1395
    موضوع مقاله به فارسی : ارزیابی پایداری ولتاژ در سیستم قدرت کنترل با استفاده از ترکیب FACTS معادل شبکه منحصر به فرد کلمات کلیدی : مدل معادل دو شین شبکه‌ی پی؛  شاخص پایداری ولتاژ جهانی، OPF، SVC، TCSC تعداد صفحات مقاله انگلیسی :  ۹  صفحه فرمت مقاله  انگلیسی : PDF فایل ترجمه : ندارد نام ژورنال :    elsevier – sciencedirect سال انتشار مقاله : ۲۰۱۳  میلادی —————————– فهرست مقاله انگلیسی :   چکیده       مقدمه مدل‌سازی کنترل‌کننده‌های FACTS ۱٫۲٫ جبران‌کننده‌ی var استاتیک ۲٫۲٫ جبران‌کننده‌ی سری تریستور کنترل‌شده بررسی دو مدل شین پی معادل و تدوین شاخص پایداری ولتاژ جهانی الگوریتم نتایج شبیه‌سازی و بحث نت ...



برای دیدن ادامه مطلب اینجا را کلیک کنید

الگوریتم ژنتیک چندهدفه برای افزایش ثبات ولتاژ با استفاده از تغییر زمان و ادوات FACTS

پنج‌شنبه 1 مهر 1395
    موضوع مقاله به فارسی : الگوریتم ژنتیک چندهدفه برای افزایش ثبات ولتاژ با استفاده از تغییر زمان و ادوات FACTS کلمات کلیدی : تغییر زمان نسل، پایداری ولتاژ، ژنتیک چند هدفه، الگوریتم، تصمیم گیری فازی، FACTS تعداد صفحات مقاله انگلیسی : ۱۳   صفحه فرمت مقاله  انگلیسی : PDF فایل ترجمه : ندارد نام ژورنال :    elsevier – sciencedirect سال انتشار مقاله :  ۲۰۱۴ میلادی —————————– فهرست مقاله انگلیسی :     چکیده       مقدمه مدل سازی و قرار دادن ادوات FACTS ۱٫۲٫ مدل ریاضی از SVC وTCSC ۲٫۲٫ قرار دادن ادوات FACTS فرموله‌کردن مسئله ۱٫۳٫ توابع هدف ۲٫۳٫ محدودیت‌های سیستم الگوریتم ژنتیک چند هدفه ۱٫۴٫ بهترین راه‌حل مصالحه نتایج و بحث نتیجه‌گیری مراجع &md ...



برای دیدن ادامه مطلب اینجا را کلیک کنید

پروژه طراحی و پیاده‌سازی نمونه آزمایشی و نیمه صنعتی تثبیت‌کننده ولتاژ خودتنظیم برای ژنراتور سنکرون

چهارشنبه 31 شهریور 1395
فرمت فایل : word ( قابل ویرایش) تعداد صفحات : 21 صفحه                   چکیده: تحقیق انجام شده از دو بخش آزمایشگاهی و نیمه صنعتی تشکیل شده است. بخش آزمایشگاهی در آزمایشگاه ماشینهای الکتریکی دانشکده مهندسی برق و کامپیوتر دانشکده فنی دانشگاه تهران و بخش نیمه صنعتی در یکی از واحدهای تولید نیروگاه گازی ری به انجام رسیده است. هدف اولیه پروژه، بهبود عملکرد حلقه کنترل ولتاژ ترمینال ژنراتورها از نقطه نظر پایداری و رگلاسیون در شرایط مختلف کاری آنها نظیر راه‌اندازی، بارگذاری، موازی شدن با شبکه، اتصال کوتاه و ... بوده است. روش تحقق این هدف، پیاده‌سازی یک سیستم کنترل ولتاژ بصورت کامپیوتری بوده تا بتوان علاوه بر انجام وظایف سیستمهای آنالوگ فعلی، رفتار دینامیکی و گذرای ولتاژ خروجی را بهبود بخشید و توانایی اعمال الگوریتمهای متنوع‌تر کنترلی و ...



برای دیدن ادامه مطلب اینجا را کلیک کنید

تحقیق درباره بررسی مولفه های مورد مطالعه پخش بار و عوامل موثر بر تنظیم ولتاژ

چهارشنبه 31 شهریور 1395
فرمت فایل : word ( قابل ویرایش) تعداد صفحات : 28 صفحه                   مقدمه: تحلیل پخش بار برای بررسی پروفیل ولتاژ، جریان خطوط و تلفات استفاده می­شود. در واقع این پارامترها را می­توان شاکله و هسته سیستم قدرت دانست که توسط تحلیل پخش بار بررسی می­شود. از طرفی دیگر حضور منابع تولید پراکنده در شبکه­های توزیع سبب اثر گذاری زیادی روی شبکه خواهد شد. این عوامل به علت گستردگی زیادی که دارند مقوله­های وسیعی را تحت پوشش خود خواهند گرفت. در این فصل ابتدا تاثیراتی که این منابع در رابطه با مقوله پخش بار شبکه خواهند گذاشت بررسی خواهند شد. مهمترین تاثیر منابع تولید پراکنده روی پروفیل ولتاژ و جریان خطوط شبکه خواهد بود که بصورت مبسوط بررسی خواهد شد. در واقع می­توان مهمترین تاثیر DG در شبکه­های توزیع را اضافه ولتاژ دانست. اضافه و ...



برای دیدن ادامه مطلب اینجا را کلیک کنید

تحقیق درباره کنترل ولتاژ و توان راکتیو در فیدرهای حلقه بسته با تولید پراکنده

چهارشنبه 31 شهریور 1395
فرمت فایل : word ( قابل ویرایش) تعداد صفحات : 25 صفحه                   مقدمه: در این مقاله به بررسی کنترل ولتاژ و توان راکتیو در سیستمهای توزیع شعاعی و حلقه بسته با حضور تولید پراکنده و چگونگی تاثیر آن بر کنترل توان می پردازیم. تجزیه و تحلیل مقایسه ای این ولتاژ و کنترل توان راکتیو در فیدرهای شعاعی و حلقه بسته بر اساس شرایط هماهنگی OLTC خازنهای پست (خازنهای موازی نصب شده در باسهای فرعی پست) و خازنهای فیدر(خازنهای شنت جایابی شده در امتداد فیدر) ارائه شده است. فواید کاربرد سیستم حلقه بسته در یک مطالعه موردی شناخته شده است. در این جا نشان داده شده است که تلفات خط (فیدر) و نوسانات ولتاژی با تغییر از سیستم شعاعی به سیستم حلقه بسته کاهش پیدا میکند. کاهش نوسانات ولتاژ در فیدر نشان داده نشده است که OLTC و کاربرد خازن را کاهش میدهد. علاوه بر این ن ...



برای دیدن ادامه مطلب اینجا را کلیک کنید

مقاله تنظیم کننده های ولتاژ

دوشنبه 29 شهریور 1395
این محصول در قالب ورد و قابل ویرایش در 58 صفحه می باشد. مقدمه : در اکثر آزمایشگاههای برق از منابع تغذیه برای تغذیه مدارهای مختلف الکترونیکی آنالوگ و دیجیتال استفاده می شود . تنظیم کننده های ولتاژ در این سیستم ها نقش مهمی را برعهده دارند زیرا مقدار ولتاژ مورد نیاز برای مدارها را بدون افت و خیز و تقریباً صاف فراهم می کنند . منابع تغذیه DC ، ولتاژ AC را ابتدا یکسو و سپس آن را از صافی می گذرانند و از طرفی دامنه ولتاژ سینوسی برق شهر نیز کاملاً صاف نبوده و با افت و خیزهایی در حدود 10 تا 20 درصد باعث تغییر ولتاژ خروجی صافی می شود. از قطعات مورد استفاده برای رگولاتورهای ولتاژ می توان قطعاتی از قبیل ، ترانسفورماتور ، ترانزیستور ، دیود ، دیودهای زنر ، تریستور ، یا تریاک و یا آپ امپ (op Amp) و سلف (L) و خازن (C) و یا مقاومت (R) و یا IC های خاص را نام برد . ...



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: مقاله، تنظیم، کننده، ولتاژ

دانلود مقاله پژوهشی با موضوع اصول رگولاتورهای خطی ولتاژ

دوشنبه 29 شهریور 1395
دانلود مقاله پژوهشی با موضوع اصول رگولاتورهای خطی ولتاژ نوع فایل  :  Word  تعداد صفحات : 52 *همراه با دیاگرام های مربوطه * فهرست محتوا چکیده این مقاله درباره عملکرد رگولاتورهای خطی ولتاژ می‌باشد. متداول‌ترین روش‌های رگولاسیون مطرح خواهند شد. در قسمت رگولاتورهای خطی، انواع استاندارد، LDO و نیمه LDO به همراه مثالهای مداری ، تشریح خواهند شد. البته رگولاتورهای سویچینگ دارای انواع کاهشی، کاهشی – افزایشی ، افزایشی و بازگشتی نیز وجود دارند. همچنین مثالهایی از کاربردهای عملی با استفاده از این رگولاتورها ارائه می‌شود. مقدمه رگولاتور خطی بلوک ساختاری اساسی تقریبا هر منبع تغذیه الکترونیکی می‌باشد. استفاده از IC رگولاتور خطی آسان است و بطور کامل حفاظت شده (fool proof) می‌باشد و آنقدر ارزان است که معمولا یکی از ...



برای دیدن ادامه مطلب اینجا را کلیک کنید
( تعداد کل: 25 )
   1       2    >>