X
تبلیغات
رایتل

بررسی شناسائی، درمان،کنترل و پیشگیری بیماری آنفلوانزای مرغی

شنبه 29 آبان 1395

بررسی شناسائی، درمان،کنترل و پیشگیری بیماری آنفلوانزای مرغی



مقدمه :

بیماری آنفلوانزای طیور یکی از بیماریهای واگیردار تنفسی ویروسی طیور است که دارای قدرت انتشار سریعی می باشد و خسارات اقتصادی سنگینی را به بسیاری از کشورها وارد نموده.

نام آنفلوانزا در حقیقت از تلاش اولیه ای که برای تعریف این ویروس صورت گرفته مشتق شده. چون در قرن چهاردهم میلادی در شهر فلورنس ایتالیا در یک گردهمایی تاثیر ستارگان بر بیماری مورد بحث و بررسی قرار گرفت و معنای کلمة Influence به تاثیر برتر می باشد. این بیماری به همین نام اسم گذاری شد که در قرن حاضر هم به تلفظ ایتالیایی به آن آنفلوانزا می گویند.

این ویروس از خانوادة اورتومیکسو ویریده و واجد 3 تیپ A- B- C می باشد که تیپ B,C فقط در انسان بیماری زا و تیپ A این ویروس در انسان، خوک و اسب و بسیاری از گونه های پرندگان بسیار الزامی می باشد. از آنجایی که مادة ژنتیکی (RAN) این ویروس دارای 8 قطعه جداگانه می باشد لذا خیلی سریع خاصیت پادگنی خود را تغییر می دهد و موجب می شود جوجه یا گله ای که به تازگی از بیماری آنفلوانزا بهبود یافته مجدداً به نوع جدیدی از ویروس آنفلوانزا مبتلا گردد. دو نوع پروتئین H و N روی سطح این ویروس وجود دارد. پروتئین H دارای 15 تحت سروتیپ مختلف و پروتئین N دارای 9 تحت سروتیپ متفاوت می باشد. پروتئین H در خاصیت پادگنی و قدرت بیماریزایی ویروس آنفلوانزا نقش اصلی را ایفا می کند.


بخش اول

تاریخچه و گزارشات بیماری

تاریخچه بیماری در طیور از سال 1878 در ایتالیا توسط پرونسیتو بعنوان یک بیماری جدید و شدید شرح داده شد و سپس در سال 1901 توسط Centanni و Savunozzi ویروس پالایش شده ایجاد بیماری کرد. سابقاً تصور می شد که تحت گروه H5 و H7 از سویه های بسیار حاد و شدید می باشند، که این فرضیه زیاد مورد قبول نمی باشد. برای مثال در سال 1971 یک ویروس غیر حاد از بوقلمونها در ایالت ارگون بدست آمد که تحت گروه H7 بود.

از آن زمان به بعد، ویروسها دیگری، با تحت گروه H5 و H7 از پرندگان اهلی و وحشی از نقاط مختلف دنیا جدا شدند و تعدادی از آنها برای گونه هائی از پرندگان غیرحاد می باشند، قابل ذکر است که در تاریخچه بیماری آنفلوانزا دقت شود اکثر موارد بیماریزای حاد و شدید از نوع H5 و H7 بوده است (10).

درسال 1955 مشخص گردید که طاعون مرغی اصولاً توسط تیپ A آنفلوانزا ایجاد می‎شود ویروسهای مربوط به سویه های اصلی طاعون مرغی (H7N7 , H7N1) تلفات بالائی در مرغ، بوقلمون و گونه های دیگر ایجاد نمود.

خوشبختانه گزارشات مربوط به همه گیریهای شدید ناشی از سویه های (بسیار بیماریزا) آنفلوانزا در 20 سال گذشته انگشت شمار می‎باشد. (6)

اپیدمی بیماری (Avian Influenza) در پنسیلوانیا در آوریل 1983 شروع شد و در سپتامبر 1984 با کشتار 5/15 میلیون پرنده از 390 گله با ضرر اقتصادی معادل 60 میلیون دلار که این خسارت هزینه (ریشه کنی، تشخیص، برنامه های قرنطینه سازی، از بین بردن گله های آلوده، رفع آلودگی و پاکسازی، مطالعات اپیدمیولوژی و پرداخت خسارت به صاحبان گله ها بود) و تخمین زده شد که 349 میلیون دلار خسارت ناشی از افت تولید بوده است (6).

از 81-1979 در بلژیک پنج سویه از ویروس آنفلوانزا جدا شد. در سال 1978 سروتیپ (H11N6) Hav3Nav1 از یک گله اردک با علائم عصبی و تنفسی و از یک گله مرغ تخمگذار با مرگ و میر 5/2% در دو هفته و یک مورد افت تولید تخم مرغ در سال 1979 سروتیپ (Hav6.N2) = (H6.N2) از یک گله مرغ تخمگذار با علایم آنتریت و افت تولید گزارش شد. در سال 1980 سروتیپ H7N7 از یک گله مرغ تخمگذار با یک افت تولید و در یک گله گوشتی با علائم تنفسی دیده شد. (1)

شیوع بیماری در طیور فرانسه مشاهده نشده است. در یک بررسی سرولوژیکی در سال 81-1980 بر روی مادرهای گوشتی، بوقلمونهای مادر و گوشتی انجام گرفت تنها تعداد کمی واکنش مثبت در بوقلمونهای مادر مشخص شد. وجود (Hav6.N2) = H6.N2A.I.V در گله های مادر گوشتی در شمال فرانسه در سال 1980 مشخص شد. A.I.V. در سوابهای مقعدی پرندگان وحشی بین سالهای 79-1976 جدا شد.

بین سالهای 80-1975 بررسی مداوم روی اردکها- غازها، مرغها و اردکهای محلی در چین انجام گرفت و نتایج مطالعات نشان داد که 41 ترکیب آنتی ژنیک متفاوت A.I از طیور چینی وارداتی و 21 طیور در هنگ کنگ بدست آمد. در 96% موارد A.I.V جدا شده از اردکها بوده است.

متعاقب شیوع A.I در گله های بوقلمون در Norfolk طی بهار 1979، دو بررسی در روی گله های بوقلمون در شرق انگلستان در سالهای 80 و 1979 انجام گرفت. بطور کلی 2822 نمونه سرم از 60 گله مورد مطالعه قرار گرفت و آزمایش رسوب ژل آگار
(agar gel precipitation) بر روی نمونه ها انجام گرفت که از این تعداد 85 نمونه (1/3%) از 4 فارم (7/6%) مثبت بودند. هر 4 فارم آلوده در Norfolk بود و تاریخچه ای از بیماری در طی بهار 1979 داشتند و هیچ ویروسی از این مکانهای آزمایش شده بدست نیامد. در بررسی دیگر در همان سال در Norfolk 67 نمونه از 1902 نمونه سرمی مثبت بودند و در دومین بررسی 18 نمونه از 1090 سرم مثبت جدا شد. ویروس A.I از اردکهای تجاری درسال 1979 از ناحیه Norfolk جدا شد. در سال 1980 ، 10 سواب مقعدی از لاشه های اردک در کشتارگاه نورفولک بدست آمد، که همگی وجود ویروس آنفلوانزا را تائید می کردند.

در آلمان تنها یک مورد شیوع بیماری و عفونت کلینیکی در پرندگان اهلی گزارش شده است. در طی سالهای 80-1978 سوابهای مقعدی و نایی از 3421 پرنده وحشی گرفته شد و 64 سویه A.I.V از همه اردکها جدا شد. (27) دریک بررسی سرولوژیکی 89 مزرعه اردک در 12 کشور مورد آزمایش قرار گرفتند، 29/7% از مزارع آنتی بادی بر علیه سویه A/duck/ Tamsui/72 (Nav6.N1)=H6.N1

25/2% آنتی بادی بر علیه A/duck/ Eng /156 (Hav3.Nav1)=H11.N6 و 49/4% آنتی بادی بر علیه A/duck/Eng/62 داشتند. آنتی بادی بر علیه

A/duck/ Czeckly /56 (Hav4.Nav1)=H4.N6 مشخص نشد. تقریباً 14% گله ها بر علیه A.I.V آنتی بادی داشتند.

در یک مطالعه سیستماتیک که بین سالهای 80-1978 در اسرائیل انجام گرفت، از 1409 پرنده که 473 پرنده اهلی را در بر می گرفت از آنها سواب مقعدی و نایی گرفته شد در مجموع 29 ویروس آنفلوانزا که 24 نمونه از پرندگان وحشی و 5 نمونه از پرندگان اهلی (بوقلمون دو نمونه، مرغ یک نمونه و اردک دو نمونه) جدا گردید.

ویروس آنفلوانزا در ایتالیا از بوقلمونها در Veneto در سال 1973 جدا شد، اما اولین شیوع بیماری در دسامبر 1976 در ایالت ورونا رخ داد. در طی سه سال بیماری در این ایالت و ایالات مجاور پخش شد.

در سال 1981 دویست گله بوقلمون ایالت ورونا از نظر سرولوژی ارزیابی شد و مدرکی دال بر عفونت به تائید نرسید. در سال 1983 بیماری در ایالت Veneto منتشر گردید. تیپهای H9H6 ویروس از بوقلمون ها در سال 1984 جدا شدند و دو نمونه از تیپ H9 از طیور در سال 1985 جدا گردید. تیپهای ویروس شایع، از نظر بیماریزائی آزمایش شدند و H7N2 , H5N2-H6.N1-H6.N2 جدا شد. تحقیق روی واکسنهای این تیپها انجام گرفته اما تا بحال هیچکدام ساخته نشده است.

از پائیز 1978 تا تابستان 1979، شیوع بیماری همراه با اورتومیکسوویروس ، 6/16% ،17/2 میلیون بوقلمون را در مینه سوتا کشت. پرندگان سنین مختلف همگی درگیر شدند و ضایعات سریعا توسعه پیدا کرد. دو ویروس متفاوت شناسائی شد Hav4Neq2(H4N8) , Hav6.N1(H6N1) . ویروسها بطور تجربی در طیور بیماری تولید نکردند، اما در یک گله 180000 مرغ تخمگذار بیماری ایجاد شد و 5% تلفات داد. منشا ویروس هرگز مشخص نشد. اما عدم واکسیناسیون بر علیه نیوکاسل ممکن است در شدت بیماری و ضایعات نقش داشته باشد. در شوروی سابق 6 ویروس A.I جدا شد که مشخصات آنتی ژنی بوسیله آنتی سرم اختصاصی معین گردید. سه ویروس جدا شده از همان ناحیه ، دارای مشخصات A/duck/ ukraine /63 (Hav7.Neq2(H7.N8) و Hongkong/68(H3.N2) بودند.

دو ویروس باقیمانده (Hav7.Nav2)(H7.N3) بودند که این ترکیب قبلا گزارش نشده بود. ویروسهای جدید A.I ممکن است در اثر نوترکیبی در طبیعت بین A/duck/ukrain/63(Hav7.Neq2)(H7N8) و A/tern/So.Africa/61(Hav5.Nav2(H5.N3) ایجاد شود.

بخش دوم :

مرفولوژی :

در حال حاضر مرفولوژی یا شناخت ساختمان و آرایش اجزاء در ویریون آنفلوانزا مشخص شده است. ویریونها به شکل کره نامنظم با قطر 80 تا 120 نانومتر می باشند. اگر چه اغلب اشکال رشته ای با همان قطر ولی با طول متفاوت وجود دارد. سطح ویریون با خارهای نزدیک به هم بطول 12-10 نانومتر پوشیده شده است. نوکلئوکپسید مارپیچ در پوشش خارجی ویروس قرار گرفته است. خارهای سطحی با دو شکل متفاوت عبارتند از (Haemaglutinin Antigen) HA که ترایمر میله ای شکل بوده و (Neuraminidase Antigen) NA که یک تترامر قارچی شکل است. HA سبب اتصال ویریون به رسپتورهای سطح سلول (سیالیل الیگوساکارید) و عامل فعالیت هماگلوتیناسیون ویروس می‎باشد. فعالیت آنتی بادی هادی ضد HA در خنثی سازی انتشار ویروس از سلولهای آلوده، در ایجاد ایمنیت اهمیت دارند.

آنزیم نورآمینیداز سبب آزاد شدن ویروس جدید از طریق فعالیت گیرنده های نورآمینیک اسید می‎شود. آنتی بادی های ساخته شده بر علیه NA در حفاظت سلول و همینطور در محدود کردن انتشار ویروس از سلولهای الوده دخالت دارند در حال حاضر ساختمان های 3 بعدی هماگلوتینین H3 و نوآمینیداز N2 و N9 مشخص شده و مناطق یا اپی توپهای و آنتی ژنی مهم آنها معلوم گردیده است. (2)

NA,HA به همراه یک پروتئین کوچک بنام M2 در یک غلاف چربی از جنس غشاء پلاسمایی سلول میزبان فرو رفته اند در زیر پوشش خارجی ویروس، پروتئین ساختمانی عمده ای بنام M1 قرار دارد که مولکولهای RNA بهمراه نوکلئوپروتئید (NP) و 3 پروتئین PA , PB2 , PB1 که مسئول تزاید و نسخه بردای RNA می باشند ا نرا احاطه کرده اند. ژنوم ویروسی متشکل از 8 قطعه RNA یک رشته ای می‎باشد. این 8 قطعه کد کننده 10 پروتئین ویروسی هستند که8 تا از آنها از اجزا ساختمانی ویریون هستند (PA,PB2,PB1,M2,M1,NP,NA,HA) . قطعه ای از RNA با کمترین وزن مولکولی 2 پروتئین غیرساختمانی NS2,NS1 راکد می‎کند. این پروتئین ها در سلول آلوده قابل تشخیص بوده و NS1 با اینکلوژن های داخل سیتوپلاسمی ارتباط دارد. در هر حال هنوز نقش NS1,NS2 بدرستی مشخص نشده است. (2)

8 قطعه RNA با وزن مولکولی متفاوت قابل جداسازی از ذرات ویروسی بوده و نقش کدگذاری هر قطعه شناخته شده است قطعات RNA ویروس می‎توانند توسط دوالکتروفورز ژل پلی اکریلامید از هم مجزا شوند. مقایسه شکل حرکت RNA ویروس های مختلف خصوصاً ویروس های بازآرائی شده (Reassortants) روی ژل در ریشه یابی منشا ژن ویروس مورد استفاده قرار می گیرند. بعلاوه می‎توان RNA ویروسهای آنفلوانزای نزدیک و نسبتاً مشابه را از طریق نقشه برداری الیگونوکلئوتیدی جهت تعیین درجه تفاوت بین سویه های مورد مقایسه قرار داد (یک روش حساس جهت تشخیص موتاسیون) این روش در ابتدا برای مقایسه نمونه هائی با قدرت بیماریزائی کم و زیاد در مرغهای ایالت پنسیلوانیا بکار رفت. در طی 10 سال اطلاعات بسیار زیادی در مورد توالی ژنهای ویروس انفلوانزا بدست آمده است. اطلاعات مربوط به توالی ژنتیکی قابل توجه بوده و شامل اطلاعات جزئی مربوط به توالی و در بعضی موارد اطلاعات کامل در مورد 8 ژن ویروسی بوده است. اطلاعات ارزشمندی نیز در زمینه تعیین توالی ژنهای HA چند تحت تیپ پرندگان شامل H7,H5,H3 بطور کامل و نیز اطلاعات ناقص مربوط به توالی 14 هماگلوتینین موجود شناخته شده بدست امده است. این اطلاعات بطور قابل توجهی در حال افزایش بوده و بایستی در حدی قابل استناد و ارزشمند شده باشد که اجازه توجیه ژنتیکی برای خواص بیولوژیکی مهم مثل قدرت بیماریزائی ، تمایل به بافت خاص و تعداد میزبانها را بدهد. (2)

ترکیبات شیمیایی : ترکیب شیمیایی ویریون شامل 1/1-8/0% RNA ، 75-70% پروتئین ، 24-20% چربی و 8-5% کربوهیدرات، چربیها در غشاء سلول قرار دارند که بیشتر آنها فسفولیپید با مقادیر کمی کلسترول و گلیکولیپید می‎باشد. کربوهیدراتها شامل ریبوز در RNA ، لاکتوز، مانوز، فوکوز و گلوکز آمین که اساسا در ویریون بصورت گلیکوپروتئین یا گلیکولیپید می باشند. پروتئین های ویریون و محل گلیکوزیلاسیون فعال، ژنوم ویروسی خاصی دارند. اما ترکیبات چربی و کربوهیدرات متصل به گلیکوپروتئین ها یا گلیکولیپیدهای سلول میزبان می باشند. (6)

طبقه بندی تحت تیپ :

تشخیص تحت تیپها بوسیله آزمایش NIHI ( مهار نورآمینیداز ) صورت می گیرد. اگر چه ، بعلت تفاوتهای آنتی ژنیک بین تحت تیپهای AIV و ویروسهای آنفلوانزای طیور تنها بوسیله یک پرسنل با تجربه و با استفاده از آنتی سرم اختصاصی در آزمایشگاههای مرجع باید تشخیص داده شود. با آزمایش HI، در انتخاب reagent جهت تشخیص تحت تیپ H ویروس و جلوگیری از مشکلات Steric hindrance یا ( موانع آرایش اتمی ) می شود موانع آرایش اتمی که اگر آنتی سرم استفاده شده برای تشخیص H شامل آنتی بادی های N ( نورآمینیداز ) که با سویه های ناشناس همولوگ می باشند وجود داشته باشد می تواند پارامیکسوویروس ایجاد شود. واکنش اختصاصی پادتنهای N با هماگلوتینین غیراختصاصی می تواند تداخل نماید و منجر به مهار غیراختصاصی و احتمالا تشخیص نادرست شود. (9)

تشخیص مولکولی و شناسائی آنها :

آزمایش ترانس کریپتاز معکوس واکنش زنجیره ای پلی مراز یا (RTPCR) جهت تشخیص حضور اسیدنوکلئیک ویروس آنفلوانزا در نمونه های کلینیکی و شناسائی نشانگرهای حاد همراه با ویروسهای خیلی حاد تحت تیپهای H5 و H7 بکار می رود. نشانرهای حاد در تحت تیپهای H5 و H7 به وسیله اسیدهای آمینه اساسی چند تائی در محل تقسیم هماگلوتینین مشخص می شوند (9)

فهرست مطالب

مقدمه

بخش اول

تاریخچه و گزارشات بیماری

اپیدمیولوژی

بخش دوم

مورفولوژی ویروس

تزاید ویروسی

تنوع آنتی ژنی

تغییر آنتی ژنی

بخش سوم

بیماریزایی ویروس آنفلوانزا

علائم بیماری

یافته های کالبد گشایی

هیستوپاتولوژی

بخش چهارم

تشخیص آزمایشگاهی

آزمایشهای شناسایی تیپ

طبقه بندی تحت تیپها

تشخیص مولکولی و شناسایی آنها

جدول تشخیص افتراقی با ویروس نیوکاسل

بخش پنجم

درمان- کنترل- پیشگیری

منابع



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

پروژه و تحقیق- تحلیل بیوگاز حاصل از کود مرغی و بلدرچین با شبکه عصبی مصنوعی

جمعه 28 آبان 1395

پروژه و تحقیق- تحلیل بیوگاز حاصل از کود مرغی و بلدرچین با شبکه عصبی مصنوعی

چکیده

در این تحقیق عوامل مؤثر در طراحی، ساخت و کابرد یک واحد بیوگاز مورد بررسی قرار گردیده و پس از ساخت و تکمیل آن با کود آلی مورد آزمایش قرار گرفته تا صحت کار دستگاه مشخص گردد. در این راستا ابتدا کلیه عوامل محیطی تأثیر گذار در طراحی و ساخت یک رآکتور بیوگاز بررسی گردید. سپس رآکتور و کلیه تجهیزات جانبی آن توسط نرم افزار SolidWorks و AutoCad طراحی گردید. در مرحله بعد با استفاده از طرح­های بدست آمده، رآکتور بیوگاز ساخته شد. پس از اتمام طراحی و ساخت، رآکتور جهت آب بندی، گاز بندی و کنترل حرارتی مورد آزمایش قرار گرفت تا صحت کار آن مشخص گردد. بعد از تأئید کارکرد، رآکتور ابتدا با کود مرغی و سپس با کود بلدرچین بارگذاری شد و گاز تولید گردید. پس از پایان آزمایش­ها، بیوگاز تولیدی با دستگاه تست گاز تجزیه گردید و در نهایت نتایج مورد تحلیل و بررسی قرار گرفت.

کلمات کلیدی: بیوگاز، رآکتور، کنترل حرارتی، طراحی.

1- بررسی منابع.. 5

1-1- تعریف بیوگاز.. 5

1-2- منابع تولید بیوگاز.. 6

1-3- نحوه تولید بیوگاز.. 7

1-4- اصول هضم بی هوازی در تولید بیوگاز.. 8

1-5- مراحل شیمیائی تخمیر مواد آلی (شامل چربیها، هیدراتهای کربن و پرتئین ها).. 12

1-5-1- تخمیر چربیها.. 12

1-5-2- تخمیر هیدراتهای کربن.. 12

1-5-3- تخمیر پرتئینها.. 13

1-6- پارامترهای مؤثر بر فرآیند هضم بیهوازی.. 13

1-6-1- درجه حرارت محیط تخمیر.. 14

1-6-2- اسیدیته ((PH.. 16

1-6-3- میزان حضور مواد مغذی در محیط (C/N).. 16

1-6-4- درجه غلظت مواد.. 17

1-6-5- میزان حضور عوامل سمی.. 17

1-6-6- مدت زمان ماند مخلوط در مخزن هضم.. 18

1-6-7- همزدن محتویات مخزن هضم و هموژنیزه کردن محتویات.. 19

1-6-8- آماده سازی مواد خام قبل از بارگیری.. 20

1-6-9- وجود مواد تسریع کننده واکنش.. 21

1-6-10- اصلاح و تغییر در طراحی دستگاه بیوگاز.. 21

1-6-11- مواد افزودنی شیمیائی.. 21

1-6-12- تغییر دادن نسبت خوراک دستگاه.. 21

1-6-13- محیط بیهوازی (بسته).. 22

1-7- انواع روشهای بارگذاری مخازن هضم:.. 22

1-7-1- سیستم پیوسته:.. 22

1-7-2- سیستم نیمه پیوسته:.. 22

1-7-3- سیستم ناپیوسته: 22

1-8- جمع آوری بیوگاز تولیدی:.. 23

1-9- بیوگاز و کود حاصل از آن:.. 24

1-10- ساختار کلی دستگاه تولید بیوگاز:.. 24

1-10-1- حوضچه ورودی:.. 24

1-10-2- حوضچه خروجی:.. 25

1-10-3- مخزن تخمیر:.. 25

1-10-4- محفظه گاز:.. 26

1-11- مهمترین طرحهای بیوگاز ساخته شده در جهان:.. 28

1-11-1- دستگاه بیوگاز عمودی.. 28

1-11-2- دستگاه بیوگاز افقی.. 30

1-11-3- دستگاه بیوگاز مشترک.. 31

1-11-4-دستگاه بیوگاز مدل چینی (قبه ثابت).. 32

1-11-5- دستگاه بیوگاز مدل فرانسوی.. 34

1-11-6- دستگاه بیوگاز با لولههای چرمی.. 35

1-11-7-دستگاه بیوگاز با مخزن پلی اتیلنی.. 37

1-11-8- دستگاه بیوگاز با سرپوش شناور (مدل هندی):‏.. 37

1-11-9- دستگاه بیوگاز مدل تایوانی (واحدهای بالونی):.. 39

1-11-10- دستگاه بیوگاز مدل نپال:.. 40

1-12 -مروری بر مطالعات انجام شده.. 40

2- مواد و روشها.. 49

2-1- مراحل ساخت واحد بیوگاز با تمام جزئیات آن:.. 49

2-1-1- انتخاب مکان ساخت واحد بیوگاز.. 49

2-1-2- بررسی شرایط جوی.. 51

2-1-3- بررسی شرایط خاک منطقه.. 51

2-1-4- بررسی مواد آلی مورد نیاز.. 52

2-1-4-1- کود مرغی.. 52

2-1-4-2- کود بلدرچین.. 52

2-2- طراحی و ساخت اتاقک عایق:.. 53

2-2-1- طراحی اتاقک عایق.. 53

2-2-2- ساخت اتاقک عایق.. 53

2-2-3- دریچه خروجی:.. 54

2-3- مراحل طراحی و ساخت مخزن هضم دستگاه:.. 55

2-3-1- طراحی مخزن هضم:.. 55

2-3-2- ساخت دستگاه:.. 57

2-3-2-1- انتخاب مخزن هضم:.. 58

2-3-2-2- لوله ورودی:.. 58

2-3-2-3- لوله خروجی:.. 59

2-3-2-4- فشار سنج:.. 61

2-3-2-5- طراحی المنتها:.. 62

2-3-2-6- PH متر: 66

2-4- عایق کاری مخزن هضم.. 66

2-5- تست رآکتور.. 67

2-5-1- تست دستگاه با آب برای اطمینان از آب بندی بودن:.. 67

2-5-2- تست صحت کار المنتها:.. 68

2-5-3- تست گازبندی مخزن:.. 68

2-6- مشخصات دستگاه تست گاز:.. 70

2-6-1- دستگاه آنالایزر گاز ساخت کمپانی Testo آلمان.. 70

2-7- معرفی شبکه عصبی.. 71

2-8- شبکه عصبی مصنوعی.. 71

2-8-1- شبکه پس انتشار پیش خور (FFBP) :.. 76

2-8-2- شبکه های پس انتشار پیشرو (CFBP):.. 76

2-8-3- الگوریتم لونبرگ- مارکوارت (LM).. 77

2-8-4- الگوریتم تنظیم بیزی (BR).. 77

2-8-5- مجذور میانگین مربعات خطا.. 78

2-8-6- خطای میانگین مطلق.. 78

2-8-7- ضریب تعیین (همبستگی).. 78

2-9- انجام آزمایش:.. 79

3- نتایج.. 81

3-1- ساخت رآکتور.. 81

3-2- آزمایش کود مرغی در دمای 35 درجه سانتیگراد.. 83

3-2-1- بررسی اثر دما بر حجم بیوگاز تولیدی از کود مرغی.. 84

3-2-2- بررسی اثر دما بر روی فشار بیوگاز کود مرغی.. 85

3-2-3- بررسی اثر PH بر روی تولید بیوگاز کود مرغی.. 86

3-3- آزمایش کود مرغی در دمای 30 درجه سانتیگراد.. 87

3-3-1- بررسی اثر دما بر حجم بیوگاز تولیدی از کود مرغی.. 87

3-3-2- بررسی اثر دما بر روی فشار بیوگاز کود مرغی.. 87

3-3-3- بررسی اثر PH بر روی تولید بیوگاز کود مرغی.. 88

3-4- آزمایش کود بلدرچین در دمای 35 درجه سانتیگراد.. 89

3-4-1- بررسی اثر دما بر روی حجم بیوگاز تولیدی از کود بلدرچین 90

3-4-2- بررسی اثر دما بر روی فشار بیوگاز کود بلدرچین.. 91

3-4-3- بررسی اثر PH بر روی تولید بیوگاز کود بلدرچین.. 92

3-5- آزمایش با کود بلدرچین در دمای 30 درجه سانتیگراد.. 93

3-5-1- بررسی اثر دما بر روی حجم بیوگاز تولیدی از کود بلدرچین 93

3-5-2- بررسی اثر دما بر روی فشار بیوگاز تولیدی از کود بلدرچین 94

3-5-3- بررسی اثر PH بر روی تولید بیوگاز کود بلدرچین.. 95

3-6- بررسی و مقایسه پارامترهای کود مرغی و بلدرچین در دمای مشخص 96

3-6-1- مقایسه حجم گاز تولیدی کود مرغی و بلدرچین در دمای 35 درجه سانتی گراد.. 96

3-6-2- مقایسه فشار گاز تولیدی کود مرغی و بلدرچین در دمای 35 درجه سانتی گراد.. 97

3-6-3- مقایسه PH گاز تولیدی کود مرغی و بلدرچین در دمای 35 درجه سانتی گراد.. 98

3-6-4- مقایسه حجم گاز تولیدی کود مرغی و بلدرچین در دمای 30 درجه سانتی گراد.. 99

3-6-5- مقایسه فشار گاز تولیدی کود مرغی و بلدرچین در دمای 30 درجه سانتی گراد.. 100

3-6-6- مقایسه PH گاز تولیدی کود مرغی و بلدرچین در دمای 30 درجه سانتی گراد.. 101

3-7- بررسی و مقایسه پارامترها در دو دمای 30 و 35 درجه سانتی گراد 102

3-7-1- مقایسه حجم گاز تولیدی کود مرغی در دمای 30 و 35 درجه سانتی گراد 102

3-7-2- مقایسه فشار گاز تولیدی کود مرغی در دمای 30 و 35 درجه سانتی گراد.. 103

3-7-3- مقایسه PH گاز تولیدی کود مرغی در دمای 30 و 35 درجه سانتی گراد.. 104

3-7-4- مقایسه حجم گاز تولیدی کود بلدرچین در دمای 30 و 35 درجه سانتی گراد.. 105

3-7-5- مقایسه فشار گاز تولیدی کود بلدرچین در دمای 30 و 35 درجه سانتی گراد.. 106

3-7-6- مقایسه PH گاز تولیدی کود بلدرچین در دمای 30 و 35 درجه سانتی گراد.. 107

3-8- نتایج شبکه عصبی.. 108

3-8-1- بررسی نتایج شبیه سازی در شبکه عصبی برای کود مرغی.. 109

3-8-1-1- بررسی فشار گاز در آزمایش کود مرغی.. 109

3-8-1-2- بررسی ph گاز در آزمایش کود مرغی.. 111

3-8-1-3- بررسی حجم گاز در آزمایش کود مرغی.. 114

3-8-2- بررسی نتایج شبیه سازی در شبکه عصبی برای کود بلدرچین.. 116

3-8-2-1- بررسی فشار گاز در آزمایش کود بلدرچین.. 116

3-8-2-2- بررسی ph گاز در آزمایش کود بلدرچین.. 118

3-8-2-3- بررسی حجم گاز در آزمایش کود بلدرچین.. 121

4- منابع:.. 125


شکل ‏1‑1 چرخه بیوگاز در طبیعت.. 7

شکل ‏1‑2- دستگاه بیوگاز.. 7

شکل ‏1‑3- فرآیند تولید گاز در مخزن هضم.. 9

شکل ‏1‑4- مراحل مختلف تبدیل مواد آلی به بیوگاز.. 13

شکل ‏1‑5- رآکتور بیوگاز به همراه همزن.. 20

شکل ‏1‑6- مخزن ترکیب 2- لوله ورودی 3-مخزن هضم 4- مواد سنگین ته نشین شده 5- مخزن گاز 6- لوله خروج گاز 7- نگهدارنده درب مخزن هضم 8- لوله خروجی 9- مخزن کودابه خروجی 10- درب مخزن تخلیه 11- سطح زمین 12- لوله انتقال گاز 27

شکل ‏1‑7- مخزن ذخیره گاز فایبرگلاس.. 27

شکل ‏1‑8- بالنهای ذخیره بیوگاز.. 28

شکل ‏1‑9- دستگاه بیوگاز عمودی.. 29

شکل ‏1‑10- دستگاه بیوگاز افقی 1. مخزنهای ترکیب 2. لوله ورودی 3. محفظه اولیه 4. محفظه ثانویه 5. حفره اصلی 6. بخش مخزن هضم بالای سطح زمین 7. حافظ گاز 8. مخلوط آب و روغن 9. خط گاز 10. دریچه خروجی 11.دریچه خروج آب 12.اجاق 13. سطح زمین.. 30

شکل ‏1‑11- دستگاه بیوگاز مشترک.. 32

شکل ‏1‑12- دستگاه بیوگاز اصلاح شده نوع چینی 1. محافظ گاز با قبه ثابت 2. مخزن هضم 3. مخزن ترکیب 4. محفظه کمکی 5. خط گازی 6. شیشه آب 7. لوله خروجی 8. اجاق.. 33

شکل ‏1‑13- دستگاه بیوگاز مدل فرانسوی 1. لوله ورودی 2. مخزن هضم فولادی ضد زنگ 3. لوله خروجی 4. غلتک زیست توده با پوشش فولادی 5. خط گازی 6. شیر آب 7. لوله های تایر واگن باری 8. شیر گاز 9. اجاق 10. سطح زمین.. 35

شکل ‏1‑14- دستگاه بیوگاز با لولههای چرمی 1. مخزن ترکیب 2. مخزن هضم لوله چرمی 3. هواکش گازی 4. خروجی 5. حافظ گاز لوله چرمی 6. خط گازی 7. اجاق 36

شکل ‏1‑15- دستگاه بیوگاز با مخزن پلی اتیلن. 1- مخزن مخلوط.2- لوله ورودی pvc. 3- کیسه مخزن هضم استوانهای روی زمین. 4- مخزن هضم استوانهای زیر زمین. 5- خروجی با لوله معین. 6- لوله گاز. 7- شیر خروج آب. 8- اجاق. 9- سطح زمین 37

شکل ‏1‑16- دستگاه بیوگاز با سرپوش شناور 1. مخزن ترکیب 2. مخزن هضم اولیه 3. مخزن هضم ثانویه 4. حافظ متحرک گاز 5. آب همراه با روغن 6. خط گاز 7. مقیاس اندازه گیری گاز 8. شیر اب 9. لولهی تخلیه 10. حفاظت از حرکت غلتک 11. کولونی... 38

شکل ‏1‑17- دستگاه بیوگاز مدل تایوانی.. 39

شکل ‏1‑18- دستگاه بیوگاز مدل نپال. مخزن ترکیب 2- لوله ورودی 3-مخزن هضم 4- مواد سنگین ته نشین شده 5- مخزن گاز 6- لوله خروج گاز 7- نگهدارنده درب مخزن هضم 8- لوله خروجی 9- مخزن کودابه خروجی 10- درب مخزن تخلیه 11- سطح زمین.. 40

شکل ‏2‑1- نقشه اتاقک عایق، مخزن هضم و گودال کودابه.. 53

شکل ‏2‑2- مراحل ساخت اتاقک عایق و گودال ذخیره کودابه خروجی.. 54

شکل ‏2‑3- طراحی مخزن هضم با استفاده از نرم افزار اتوکد.. 57

شکل ‏2‑4- مخزن هضم پلی اتیلنی.. 58

شکل ‏2‑5- لوله ورودی و لوله خروجی.. 59

شکل ‏2‑6- الف- لوله خروج کودابه ب- مخزن هضم و لولههای ورودی و خروجی 60

شکل ‏2‑7- لوله دو شاخه برای خروج گاز و نصب فشار سنج.. 61

شکل ‏2‑8- مدار الکتریکی المنتهای حرارتی.. 63

شکل ‏2‑9- طراحی قاب المنتهای حرارتی.. 63

شکل ‏2‑10- المنتهای حرارتی در قاب فلزی قرار گرفتهاند... 64

شکل ‏2‑11- الف- تابلوی برق، ب- کلیدهای کنترل کننده المنتها.. 65

شکل ‏2‑12- ترموستات.. 65

شکل ‏2‑13- الف- محلول های بافر ب- PH متر.. 66

شکل ‏2‑14- عایقکاری رآکتور.. 67

شکل ‏2‑15- دستگاه تست گاز.. 70

شکل ‏2‑16- مدل ریاضی ساده شده عصب واقعی.. 72

شکل ‏2‑17- پرسپترون 3لایه با اتصالات کامل.. 73

شکل ‏3‑1- نمودار حجم- زمان کود مرغی در دمای35.. 85

شکل ‏3‑2- نمودار فشار- زمان کود مرغی در دمای35.. 86

شکل ‏3‑3- نمودار PH- زمان کود مرغی در دمای35.. 86

شکل ‏3‑4- نمودار حجم- زمان کود مرغی در دمای30.. 87

شکل ‏3‑5- نمودار فشار- زمان کود مرغی در دمای30.. 88

شکل ‏3‑6- نمودار PH- زمان کود مرغی در دمای30.. 89

شکل ‏3‑7- نمودار حجم- زمان کود بلدرچین در دمای35.. 91

شکل ‏3‑8- نمودار فشار- زمان کود بلدرچین در دمای35.. 92

شکل ‏3‑9- نمودار PH - زمان کود بلدرچین در دمای35.. 93

شکل ‏3‑10- نمودار حجم- زمان کود بلدرچین در دمای30.. 94

شکل ‏3‑11- نمودار فشار- زمان کود بلدرچین در دمای30.. 95

شکل ‏3‑12- نمودار PH - زمان کود بلدرچین در دمای30.. 96

شکل ‏3‑13- نمودار حجم - زمان کود مرغی و بلدرچین در دمای35.. 97

شکل ‏3‑14- نمودار فشار - زمان کود مرغی و بلدرچین در دمای35.. 98

شکل ‏3‑15- نمودار PH - زمان کود مرغی و بلدرچین در دمای35.. 99

شکل ‏3‑16- نمودار حجم- زمان کود مرغی و بلدرچین در دمای30.. 100

شکل ‏3‑17- نمودار فشار- زمان کود مرغی و بلدرچین در دمای30.. 101

شکل ‏3‑18- نمودار PH - زمان کود مرغی و بلدرچین در دمای30.. 102

شکل ‏3‑19- نمودار حجم گاز تولیدی کود مرغی در دمای 30 و 35.. 103

شکل ‏3‑20- نمودار فشار گاز تولیدی کود مرغی در دمای 30 و 35.. 104

شکل ‏3‑21- نمودار PH کود مرغی در دمای 30 و 35.. 105

شکل ‏3‑22- نمودار حجم گاز تولیدی کود بلدرچین در دمای 30 و 35.. 106

شکل ‏3‑23- نمودار فشار گاز تولیدی کود بلدرچین در دمای 30 و 35 107

شکل ‏3‑24- نمودار PH کود بلدرچین در دمای 30 و 35.. 108

شکل ‏3‑25- نمودار تعیین عملکرد شبکه برای فشار کود مرغی.. 109

شکل ‏3‑26- نمودار آموزش و اعتبار سنجی داده های فشار گاز کود مرغی.. 110

شکل ‏3‑27- نمودار تست داده های فشار کود مرغی.. 111

شکل ‏3‑28- نمودار تعیین عملکرد شبکه برای ph کود مرغی.. 112

شکل ‏3‑29 - نمودار آموزش و اعتبار سنجی داده های ph کود مرغی.. 113

شکل ‏3‑30- نمودار تست داده هایph کود مرغی.. 113

شکل ‏3‑31- نمودار تعیین عملکرد شبکه برای حجم گاز کود مرغی.. 114

شکل ‏3‑32- نمودار آموزش و اعتبار سنجی داده های حجم کود مرغی.. 115

شکل ‏3‑33- نمودار تست داده های حجم گاز کود مرغی.. 116

شکل ‏3‑34- نمودار تعیین عملکرد شبکه برای فشار گاز کود بلدرچین.. 117

شکل ‏3‑35- نمودار آموزش و اعتبار سنجی داده های فشار گاز کود بلدرچین 118

شکل ‏3‑36- نمودار تست داده های فشار گاز کود بلدرچین.. 118

شکل ‏3‑37- نمودار تعیین عملکرد شبکه برایph کود بلدرچین.. 119

شکل ‏3‑38- نمودار آموزش و اعتبار سنجی ph کود بلدرچین.. 120

شکل ‏3‑39- نمودار تست داده های ph کود بلدرچین.. 121

شکل ‏3‑40- نمودار تعیین عملکرد شبکه برای حجم گاز کود بلدرچین.. 122

شکل ‏3‑41- نمودار آموزش و اعتبار سنجی حجم گاز کود بلدرچین.. 123

شکل ‏3‑42- نمودار تست داده های تست برای حجم گاز کود بلدرچین.. 123


جدول ‏1‑1- ترکیبات موجود در بیوگاز.. 5

جدول ‏1‑2- جدول فرآیندهای مختلف تبدیل زیست توده به بیوگاز.. 11

جدول ‏1‑4- محدودههای درجه حرارت در تخمیر بیهوازی.. 15

جدول ‏1‑4- نمودار مدت زمان ماند مواد در داخل رآکتور.. 19

جدول ‏3‑1- مقایسه دستگاه بیوگاز نوع مخزن بتونی (مدل چینی) با مخزن پلی اتیلنی 82

جدول ‏3‑2- تجزیه بیوگاز کود مرغی.. 84

جدول ‏3‑3- تجزیه بیوگاز کود بلدرچین.. 90

جدول ‏3‑4- تعیین عملکرد شبکه برای مقادیر فشار.. 110

جدول ‏3‑5- تعیین عملکرد شبکه برای مقادیر ph.. 112

جدول ‏3‑6- تعیین عملکرد شبکه برای مقادیر حجم.. 115

جدول ‏3‑7- تعیین عملکرد شبکه برای مقادیر فشار.. 117

جدول ‏3‑8- تعیین عملکرد شبکه برای مقادیر ph.. 119

جدول ‏3‑9- تعیین عملکرد شبکه برای مقادیر حجم.. 122

در جوامع کنونی وجود انرژی مستمر، پایدار و اقتصادی لازمه هر­گونه توسعه و رشد اقتصادی می­باشد. پس از انقلاب صنعتی، انرژی به تدریج به یکی از عوامل اصلی در تولید ملی و حرکت چرخ­های اقتصادی کشورهای صنعتی و به دنبال آن، سایر کشورهای در حال توسعه تبدیل شده است (ثقفی، 1382). اقتصاد و تمدن کنونی تا حدی به انرژی وابسته است که تصور حتی لحظه­ای ادامه زندگی در عصر حاضر بدون انرژی امکان پذیر نیست. به طوری­که با اختلال و یا توقف در عرضه­ی آن، ماشین اقتصاد از کار خواهد افتاد. بنابراین تمامی کشورها در صدد هستند به هر نحو ممکن از انرژی مستمر و پایداری برخوردار باشند. از طرفی رشد اقتصادی و افزایش تقاضای انرژی در جهان سبب شده که قیمت نفت و گاز افزایش پیدا کرده و اتکا به این منابع برای تأمین انرژی کاهش یابد (تابنده، 1376). مهم­ترین مسئله­ای که در قرن 21 بشریت با آن مواجه است مسئله انرژی و سوخت می­باشد. زیرا از یک طرف تعداد صنایع مصرف کننده انرژی رو به افزایش است و از طرف دیگر سوخت­های فسیلی (مهم­ترین انرژی­ مصرفی این صنایع) رو به اتمام می­باشند. این در حالی است که هم اکنون آلودگی­هایی که این سوخت­ها ایجاد می­کنند، موجب مشکلاتی در جهان گردیده است و اتحادیه­های جهانی در حال تصویب قانون­هایی مبنی بر حذف یا به حداقل رساندن مصرف این سوخت­ها در دهه­های آینده می­باشند. بنابراین تمام کشورهای صنعتی، نیمه صنعتی و حتی اکثر کشورهای جهان سوم در تلاش­اند تا برای جایگزین کردن این سوخت­ها چاره­ای بیاندیشند و اتمام این منابع را به تأخیر اندازند (عدل و همکاران، 1379).

منابع فسیلی مرسوم و تجدید ناپذیر تأثیر شگرفی بر امنیت انرژی دارند. این مسئله بسیاری از کشورهای جهان را واداشته است که به مسئله امنیت عرضه انرژی تمایل پیدا کرده و به تغییرات گسترده­ای در اقتصاد انرژی خود اهتمام تام ورزند. در این زمینه پیشرفت­های فناوری، نوید بخش راه حل­هایی نو درباره تولید انرژی مورد نیاز بشر است. با شناسایی این روش­های جدید، گامی بلند در زمینه تغییر زیرساخت­های تولید انرژی برداشته شده است (علیزاده، 1375). استفاده از ذخایر نامحدود انرژی تجدیدپذیر در این خصوص تأثیرات مهمی دارد. گستردگی و توزیع این عوامل در طبیعت باعث شده است که سیستم­های تولید انرژی به سمت سیستم­های محلی پیش رود؛ که انرژی­های نوین به خوبی می­توانند برای این منظور به کار گرفته شود. هم اکنون مسائلی مانند انرژی، محیط زیست، ازدیاد مواد زائد خطرناک، اتمام پذیری منابع فسیلی و رشد فزاینده مصرف انرژی از جمله مفاهیمی هستند که تحقیقات مختلفی را در جهان به خود اختصاص داده‌اند. به واقع این مسائل روشن می­کنند که دیگر نمی­توان به منابع موجود انرژی متکی بود (تابنده، 1376). در حقیقت، انجام تحقیقات گسترده در جهت دستیابی به منابع جدید و سالم که در چند دهه­ی اخیر توسعه ویژه‌ای پیدا کرده‌اند را می‌توان بیانگر میزان اهمیت این نوع مفاهیم و علوم مرتبط به آنها دانست.

هم اکنون بیشتر کشورهای جهان برنامه­های خود را طوری تنظیم کرده­اند تا با بهینه کردن مصرف این منابع بر عمر منابع فسیلی خود بیفزایند و این در حالی است که با به کارگیری فناوری انرژی­های تجدید پذیر سعی دارند که میزانی از سهم مصرف منابع فسیلی را بر عهده این منابع بگذارند تا هم عمر منابع فسیلی را به تأخیر اندازند و هم جایگزینی برای آن یافته باشند (حیدری، 1365). مدارک بسیاری وجود دارد که سیاست­های انرژی جهانی که استفاده­ کار­آمد از سوخت­های فسیلی و انرژی را ارتقاء می­دهند، به لحاظ محیطی غیر مسئولانه هستند؛ زیرا آن­ها باعث فساد جدی محیطی در سطوح محلی، منطقه­ای و جهانی می­گردند. مطالعات نشان داده­اند که با ادغام منابع انرژی تجدید پذیر و ترکیب انرژی کلی، هر یک از این تأثیرات محیطی منفی را می­توان کاهش داد، یا مانع آن شد (حیدری، 1365). باید اذعان داشت که در قرن 21 سوخت­های فسیلی کم کم جای خود را به انرژی­های تجدید پذیر (انرژی خورشیدی، بادی، برق آبی، بیومس، زمین­گرمائی و غیره) خواهند داد. در میان این انرژی­ها، بیوگاز حاصل از بیومس، از اهمیت ویژه­ای برخوردار است. در این میان، بیوگاز به علت سالم‌سازی محیط زیست، تولید انرژی و کود مرغوب و قابلیت ایجاد آن در جوار اجتماعات بشری از اهمیت و جایگاه ویژه‌ای برخوردار است (الماسی، 1361). گرچه شناسایی بیوگاز در جهان سابقه­ای طولانی دارد، اما استفاده عمومی و رایج آن در خلال قرن اخیر و بویژه در سه دهه گذشته بوده است. بیوگاز که منبع آن توده­های زیستی است، در انتخاب منابع جایگزین انرژی برای روستاها، مورد ایده آلی می­باشد، بدین مفهوم که ارزان بوده و به لحاظ تولید و منشأ، محلی است. همچنین منبعی از انرژی است که برای چندین کاربری از جمله: گرم کردن، روشن کردن، ایجاد توان الکتریکی با مقیاس کوچک و غیره سودمند می­باشد. از طرفی بیوگاز علاوه بر تولید انرژی باعث تولید کود کشاورزی و افزایش سطح بهداشت عمومی جامعه و کنترل بیماری­ها می­شود. همچنین راه حلی مناسب برای ‏دفع مواد زائد جامد می­باشد (دهقان و همکاران، 1365). فاضلاب و مواد زائد جامدی که توسط صنایع و جوامع تولید می­گردد، باعث آلودگی ‏شدید محیط می­شوند که می­توان با فناوری بیوگاز خطرات ناشی از این مواد را به شدت کاهش داد و از انرژی و ‏کود تولیدی آن نیز استفاده نمود (رضویان، 1374). استحصال بیوگاز را می­توان از فرآیند­های بی هوازی تصفیه فاضلاب (‏UASB) و همچنین از محل­های دفن زباله نیز انجام داد و بخشی از هزینه­های مصرفی این سایت­ها را جبران نمود (حیدری، 1365). منافع زیست محیطی سیستم­های بیوگاز حتی فراتر از سیستم­های تصفیه مرسومی است که تاکنون مورد استفاده ‏قرار می­گرفتند. این منافع، علاوه بر آنچه بیان شد، شامل کنترل بو، بهبود ‏کیفیت آب و هوا، بهبــود ارزش غذایی کــود تولیدی، کاهش میزان انتشار گازهای گلخــانه­ای و دست­یابی به ‏بیوگاز به عنوان یک منبع انرژی می­باشد؛ ‏که خود بیوگاز تولیدی می­تواند به طور همزمان انرژی الکتریکی و حرارتی تولید کند (تابنده، 1376). در این پژوهش ابتدا مدلی از رآکتور بیوگاز برای تولید بیوگاز در مزرعه طراحی و ساخته شد. سپس این دستگاه مورد آزمایش قرار گرفت تا علاوه بر مشخص شدن صحت کار آن، گاز تولیدی حاصل از کود مرغی و کود بلدرچین مورد آزمایش و مقایسه قرار گیرد.

فصل اول

بررسی منابع


1- بررسی منابع 1-1- تعریف بیوگاز

به مجموعه گازهای تولیدی حاصل از هضم و دفع فضولات، اعم از انسانی، گیاهی و حیوانی که در نتیجه فقدان اکسیژن و فعالیت باکتری­های غیر هوازی خصوصاً باکتری­های متان­زا تولید می­شود، بیوگاز گفته می­شود. این گاز به طور طبیعی در باتلاق­ها، مرداب­ها و یا مکان­های دفن زباله­های شهری تولید می­شود و برای استفاده، لازم است مهار گردد (عمرانی، 1375). برای استفاده اقتصادی از بیوگاز، عمل تخمیر را می­توان در شرایط کنترل شده در دستگاهی نسبتاً ساده به نام مخزن هضم انجام داد (الماسی، 1384). بیوگاز از روش تخمیر بی­هوازی زیست­توده حاصل می‎­شود. در واقع بیوگاز مخلوطی است از گازهای گوناگون که گاز متان عنصر اصلی تشکیل دهنده آن است (الماسی، 1361)؛ به طوری که حدود 55 تا 70 درصد این گاز را متان و حدود 35 تا 40 درصد آن را دی اکسید کربن و درصد بسیار ناچیزی را گازهای ازت و هیدروژن سولفوره و غیره تشکیل می­دهند که مقادیر این گازها بستگی به دمای مخزن هضم و نوع مواد آلی داشته و با تغییرات آنها درصدهای گاز تغییر می­یابند (عبدلی، 1363). طبق مطالعات انجام گرفته بر روی تجزیه بیوگازِ حاصل از مخازن هضم، ترکیبات بیوگاز از این قرارند (جدول 1-1):




خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

تحقیق در مورد پنجه مرغی

چهارشنبه 7 مهر 1395
لینک پرداخت و دانلود *پایین مطلب * فرمت فایل :Word ( قابل ویرایش و آماده پرینت ) تعداد صفحه2 فهرست مطالب پنجه مرغی علف هرز پنجه مرغی با نام علمی Cynodon dactylon: نام علمی Cynodon dactylon نام اینگلیسی Bermuda grass از سمج ترین علفهای هرز گیاهی بشمار می آید. گل آذین به صورت سنبله و در محل پهنک برگ به ساقه حلقه ای از کرک های مجتمع و سفید رنگ دیده میشود . رویشی : چند ساله و مقاوم به سرما و گرماست.( گرما چون تابستان را تجربه میکند ) واز طریق بذز و ساقه های زیر و رو زمینی تکثیر پیدا میکند یعنی هر قسمت از این گیاه به شخصه قدرت رویش را داراست . بیشتر در غلات دیده میشودو در حاشیه مزارع و جاده ها و فضای سبز و پارکها به چشم میخورد . از علف هرزهای مقاوم به شوری و خشکی است چون در اثر کمبود ...



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: تحقیق، مورد، پنجه، مرغی

تحقیق در مورد پنجه مرغی

شنبه 27 شهریور 1395
لینک پرداخت و دانلود *پایین مطلب * فرمت فایل :Word ( قابل ویرایش و آماده پرینت ) تعداد صفحه2 فهرست مطالب پنجه مرغی علف هرز پنجه مرغی با نام علمی Cynodon dactylon: نام علمی Cynodon dactylon نام اینگلیسی Bermuda grass از سمج ترین علفهای هرز گیاهی بشمار می آید. گل آذین به صورت سنبله و در محل پهنک برگ به ساقه حلقه ای از کرک های مجتمع و سفید رنگ دیده میشود . رویشی : چند ساله و مقاوم به سرما و گرماست.( گرما چون تابستان را تجربه میکند ) واز طریق بذز و ساقه های زیر و رو زمینی تکثیر پیدا میکند یعنی هر قسمت از این گیاه به شخصه قدرت رویش را داراست . بیشتر در غلات دیده میشودو در حاشیه مزارع و جاده ها و فضای سبز و پارکها به چشم میخورد . از علف هرزهای مقاوم به شوری و خشکی است چون در اثر کمبود ...



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: تحقیق، مورد، پنجه، مرغی

پروژه و تحقیق- تحلیل بیوگاز حاصل از کود مرغی و بلدرچین با شبکه عصبی مصنوعی- 147 صفحه-docx

پنج‌شنبه 25 شهریور 1395
  چکیده در این تحقیق عوامل مؤثر در طراحی، ساخت و کابرد یک واحد بیوگاز مورد بررسی قرار گردیده و پس از ساخت و تکمیل آن با کود آلی مورد آزمایش قرار گرفته تا صحت کار دستگاه مشخص گردد. در این راستا ابتدا کلیه عوامل محیطی تأثیر گذار در طراحی و ساخت یک رآکتور بیوگاز بررسی گردید. سپس رآکتور و کلیه تجهیزات جانبی آن توسط نرم افزار SolidWorks و AutoCad طراحی گردید. در مرحله بعد با استفاده از طرح­های بدست آمده، رآکتور بیوگاز ساخته شد. پس از اتمام طراحی و ساخت، رآکتور جهت آب بندی، گاز بندی و کنترل حرارتی مورد آزمایش قرار گرفت تا صحت کار آن مشخص گردد. بعد از تأئید کارکرد، رآکتور ابتدا با کود مرغی و سپس با کود بلدرچین بارگذاری شد و گاز تولید گردید. پس از پایان آزمایش­ها، بیوگاز تولیدی با دستگاه تست گاز تجزیه گردید و در نهایت نتایج مورد تحلیل و بررسی قرار گرفت. کلمات کلیدی: بیوگاز، ر ...



برای دیدن ادامه مطلب اینجا را کلیک کنید

آنفلوانزای مرغی

چهارشنبه 24 شهریور 1395
آنفلوانزای مرغی 7 صفحه همه ما کم و بیش داستان مرغهای بیمار را شنیده ایم و هر از گاهی از طریق رسانه ها راجع به بیماری هولناک آنفلوانزای مرغی اطلاعاتی بدست می آوریم. این بیماری هرچند وقت یکبار با شیوع خود عده زیادی را به کام مرگ می فرستد و سروصدای زیادی برپا می کند. به گزارش سازمان جهانی بهداشت، همه گیری آنفلوانزا سه یا چهار بار در هر 10سال اتفاق می افتد و همه گیری بعدی آن غیرقابل اجتناب بوده و احتمالاً در آینده نزدیک اتفاق می افتد. آنفلوانزای مرغی یک بیماری ویروسی بسیار مسری است و می تواند یک تهدید جهانی هم برای انواع طیور باشد و این درحالی است که این ویروس می تواند انسان را آلوده کند و متأسفانه این ویروس از انسان نیز قابل سرایت است و باید بزودی منتظر اولین همه گیری آنفلوانزای قرن21 در دنیا باشیم که دانشمندان تخمین می زنند این همه گیری جهانی با مرگ و میر بالایی رخ می دهد؛ یعنی مشابه آنچه ...



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: آنفلوانزای، مرغی