X
تبلیغات
رایتل

بررسی و شرح کارخانه ریخته گری آلومینیوم تولید کننده سرسیلندر و پوسته کلاچ

پنج‌شنبه 4 آذر 1395

بررسی و شرح کارخانه ریخته گری آلومینیوم تولید کننده سرسیلندر و پوسته کلاچ

کارخانه ریخته گری آلومینیوم

هدف این بخش تولید سیلندر و سر سیلندر و پوسته کلاج پژو می باشد. در این قسمت ریخته گری سیلندر از نوع تحت فشار که از دستگاه High Pressure با قدرت

2500 HP که یک دستگاه ژاپنی است استفاده می شود و پوسته کلاج و سرسیلندر با دو دستگاه Low Pressure با قدرت 1600 HP که دستگاه ایتالیایی است تولید می شود البته قبلاً در این واحد دستگاه ریژه ریزی نیز موجود بود که با توجه به طرح انتقال بخش ریخته گری به شهرستان ابهر این دستگاه جمع آوری و به ابهر منتقل شد.

در قسمت تولید ذوب از 5 کوره استفاده می شود که این کوره ها شعله ای بوده و دمای حداکثر آنها در حدود می باشد. سه کوره آن برای تامین ذوب قسمت سیلندر با ظرفیت سه تن و سرعت تولید یک تن در ساعت بکار می رود دمای ذوب هنگامی که درون با قبل ریخته می شود حدود 750- 730 درجه سانتگراد می باشد که توسط لیفتراک به قسمت ریخته گری سیلندر حمل می شوند. درجه حرارت مذاب هنگام تحویل در قیمت ریخته گری سیلندر به می رسد که در کوره نگهدارنده، موجود می باشد و دو کوره دیگر هر کدام با ظرفیت ذوب 500 کیلوگرم و سرعت تولید 150 کیلوگرم در ساعت موجود می باشند و برای قسمت سر سیلندر بکار می روند.

در مورد گاز زدایی در این کوره ها باید گفت با توجه به ویژگی فلز آلومینیوم و اینکه گازها کمتر از حالت انحلال خارج می شوند در قسمت سیلندر نیازی به گاز زدایی نمی باشد اما برای سر سیلندر از گاز آرگون که توسط دستگاهی به کوره متصل است استفاده می شود. مهمترین مشخصات گاز زدایی مذاب سر سیلندر عبارتند از :

سرعت دوران دهنده گاز 400-450 RPM

زمان گاز زدایی 15-12 دقیقه

درجه حرارت شروع گاز زدایی

نوع گاز مصرفی : آرگون

فشار گاز ورودی : 5/2 اتمسفر

درصد خلوص گاز مصرفی 99/99%

در حدود چهار دقیقه پایانی گاز زدایی مواد :

AL:Sr10%

AL:Mg50%

به منظور اصلاح ساختار و جوانه زنی و آلیاژ سازی در چهار دقیقه پایانی

AL-Sr10% و AL-Mg50% افزوده و دوباره گاز زدایی می کنیم همچنین از فلاکس Coveral11 که یکی ترکیب فلوئوریدی می باشد استفاده می کنیم.

تولید سیلندر با دستگاه HP

از دستگاه HighPressure به منظور تولید سیلندر پژو استفاده می شود این دستگاه 180 تن وزن دارد و نیروی قفل شدن قالب ها 2500 تن و نیرویی که عملShout را انجام می دهد 850 ( ) می باشد. کوره نگهدارنده آن 2500 کیلوگرم وزن دارد و دمای ذوب حدود 720 درجه سانتیگراد می باشد.

دستگاه از دو قسمت تشکیل شده است.

1) فک ثابت:

2) فک متحرک که امکان قفل شدن قالب ها و شات کردن مذاب را می دهد. زمان کل تولید یک قطعه سه دقیقه می باشد و برای سیستم شات از سیستم هیدرولیک و گاز ازت استفاده می شود.

برای تهیه سیلندر از مذاب آلیاژ AS9U3 استفاده می شود برخی از نکات در تهیه این مذاب عبارتند از :

1- در صورت سرد بودن کوره عملیات پیش گرم به صورت کافی، صورت می گیرد تا دیواره کوره سرخ شود.

2- مواد اولیه و شارژ اولیه بصورت 50%شمش و 50%برگشتی سالن می باشد.

3-پس از ذوب کامل شارژ، دمای مذاب به حدود می رسد.

4- فلاکس Coverall11 به نسبت 500gr به ازاء 100 کیلوگرم مذاب روی سطح مذاب ریخته و پس از هم زدن در سطح مذاب عمل سرباره گیری صورت می گیرد.

5- دمای مذاب هنگام آلیاژ سازی می باشد.

6- مذاب با ترکیب شیمیایی و درجه حرارت حدود داخل پاتیل پیش گرم و تخلیه می شود. مذاب با ابزار دستی به هم زده می شود. در حین تخلیه مذاب در پاتیل AL -50Mg% به مذاب افزوده می شود.

7- مقداری فلاکس بر سطح مذاب داخل پاتیل ریخته و در سطح هم زده و سرباره گیری می شود.

8- ابزار مورد استفاده در واحد ذوب باید پیش گرم و پوشش داده شود.

9- دمای ذوب نباید از بالاتر رود.

10- روزی یک مرتبه دیواره کوره ذوب و پاتیل با ماده Coverall 88 تمیز می شود.

ترکیب شیمیایی مذاب:

Si

Fe

Cu

Mg

Ti

Zn

Ni

Pb

Sn

Fe+Mn

Min

25/8

6/0

8/2

__

2/0

__

__

__

__

__

Man

75/9

9/0

7/3

2/0

35/0

1

5/0

2/0

2/0

1/1

در مورد دستگاه HP باید گفت دارای سیستم خنک کننده از دو نوع زیر است

1- مدارهای داخلی سیستم

2-اسپری ماده خنک کننده که شامل آب و ماده روان ساز است.

کنترل درجه حرارت مذاب چدن

مذاب از کوره فرعی وارد کوره ما در ( کوره نگهدارنده ) می‌شود و دمای کوره همیشه باید کنترل شود که از المنتی که بوسیله سیم به صفحه دیجیتالی وصل است استفاده می‌شود بر روی المنت‌ها یک پوشش سرامیکی قرار دارد.

اگر مذاب دارای دمای پائینی باشد امکان بروز عیب نیامد و ایجاد سرد جوشی در قطعات تولیدی می‌شود و اگر درجه حرارت مذاب بسیار بالا باشد امکان ماسه سوزی و اکسید شدن مذاب و ترکیب مذاب با جداره نسوز و تولید سرباره و یا ایجاد مک‌های گازی درشت در قطعه که به آن سوسه می‌گویند وجود دارد.

واحد شات بلاست Shot Blost

شات بلاست دستگاهی است که توسط پرتاب ساچمه‌های ریز با سرعت بالا به دست قطعه آن را تمیز می‌کند جنس ساچمه از نوع فولاد می‌باشد و جنس بدنه دستگاه از فولاد یا چدن پرکروم می‌باشد. در این قسمت نباید قطعات بیشتر از دوبار ساچمه‌زنی شوند زیرا باعث کاهش استحکام قطعه‌می‌شود.

واحد سنگ زنی

پس از تمیز کاری قطعات در واحد شات بلاست سیلندر و سرسیلندر، جهت از بین بردن زائده‌های یاقیمانده به قسمت سنگ زنی هدایت می‌شوند بعد از سنگ زنی سوراخها و مک‌ها را با جوشکاری پر کرده و با سنگ صاف می‌کنند.

واحد واتر تست

در این واحد دو دستگاه واتر تست موجود است که یکی از آنها برای سیلندر و دیگری برای سرسیلندر می‌باشند که نشستی را کنترل می‌کنند. در این دستگاه هوا با فشار به داخل قطعه اعمال می‌شود. البته تمام منافذ خروجی هوا توسط دستگاه بسته می‌شود. سپس قطعه در داخل آب فرو برده می‌شود و در صورتی که از داخل آب حبابی خارج نشود سالم بودن قطعه نتیجه می‌شود در غیر این صورت جزو قطعات ضایعاتی محسوب می‌شود.

واحد کنترل نمایی قطعه

در این قسمت یک کنترل برروی قطعات انجام می‌شود که باید دارای خصوصیات زیر باشد:

زمینه پرلیتی ـ فریتی که بیشتر از 95% پرلیت داشته باشد و سختی در حدود HB 235-797 و 70% گرافیت نوع A.

واحد آزمایشگاه

درسه بخش مستقل از هم مشغول فعالیت می‌باشند که عبارتند از :

الف) آزمایشگاه ماسه: در این آزمایشگاه در هر ساعت نمونه‌هایی از ماسه خط قالب‌گیری و ماهیچه‌سازی گرفته شده و درصد رطوبت، استحکام فشاری، تراکم پذیری، درصد خرد شوندگی و نفوذ پذیری آن اندازه‌گیری می‌شود. ضمناً آزمایشات درصد خاک رس فعال و غیر فعال، درصد مواد سوختنی نیز به طور روزانه محاسبه می‌شود.

ب) آزمایشگاه شیمی‌تر: در این آزمایشگاه آزمایشات آنالیستی، مواد مورد مصرفی و تطبیق آن با استانداردهای موجود انجام می‌شود.

ج) ازمایشگاه فیزیک: به این قسمت مجهز به دستگاه کوانتومتر ARL که 22 عنصر را آنالیز و میکروسکوپ متالوگرافی LEITZ که امکان بزرگنمایی تا 2500 برابر را دارا می‌باشد.

تولید ماهیچه

در کارگاه ریخته‌گری جمعاً 14 نوع ماهیچه به روشهای ( Hot Box ) و ( Cold Box ) تولید می‌شوند که از این تعداد 9 ماهیچه برای تولید سیلندر با نامهای 1- ماهیچه بدنه شماره 1. 2- ماهیچه بدنه شماره2. 3- ماهیچه بدنه شماره3. 4- ماهیچه بدنه شماره4.

که این چهار ماهیچه هر کدام جای میل لنگ و پیستون را تعبیه می‌کند. راهگاه مذاب در این ماهیچه‌ها تعبیه شده است. 5- ماهیچه واتر جاکت برای عبور آب سیلندر. 6- ماهیچه سینی کوچک برای تعبیه واتر پمپ. 7- ماهیچه سینی بزرگ برای تعبیه فلایویل. 8- ماهیچه کاسه. 9- ماهیچه میل سوپاپ.

تمام ماهیچه‌های سیلندر بصورت کشوئی درهم فرو می‌رود و کل این مجموعه در قسمت قالب‌گیری توسط دستگاه میکسچر برداشته و در قالب جایگذاری می‌کنند. البته 5 نوع ماهیچه نیز جهت سر سیلندر تولید می‌شوند که عبارتند از :

1ـ ماهیچه جهت محل عبور بنزین.

2ـ ماهیچه دود.

3- ماهیچه اتاق که نشیمنگاههای سوپاپ را می‌سازد.

4- ماهیچه مسیر عبور آب در سر سیلندر.

5- ماهیچه شمع.

ماهیچه‌های سرسیلندر پس از رنگ شدن و خشک شدن و پخته شدن در گرمخانه جهت مونتاژ و نصب به خط قالب‌گیری منتقل می‌شوند.



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

بررسی مشخصات ریخته گری و ذوب

پنج‌شنبه 4 آذر 1395

بررسی مشخصات ریخته گری و ذوب


مشخصات ریخته گری و ذوب

آلومینیم و آلیاژ های آن به دلیل نقطه ذوب کم و برخورداری از سیالیت بالنسبه خوب و همچنین گسترش خواص مکانیکی و فیزیکی در اثر آلیاژ سازی و قبول پدیده های عملیات حرارتی و عملیات مکانیکی ، در صنایع امروز از اهمیت زیادی برخور دارند و روز به روز موارد مصرف این آلیاژ ها توسعه می یابد . عناصر مختلف مانند سیلیسیم ، منیزیم و مس در خواص ریخته گری و مکانیکی این عنصر شدیداً تأثیر می گذارند و یک رشته آلیاژ های صنعتی پدید می آورند که از مقاوت مکانیکی ، مقاوت به خورندگی و قابلیت ماشین کاری بسیار مطلوب برخوردارند . قابلیت جذب گاز و فعل و انفعالات شیمیایی در حالت مذاب از اهم مطالبی است که در ذوب و ریخته گری آلومینیم مورد بحث قرار می گیرد .

تقسیم بندی آلیاژ ها

آلیاژ های آلومینیم در اولین مرحله به دو دسته تقسیم می گردند :

الف ) آلیاژ های نوردی (Wrought Alloys) که قابلیت پزیرش انواع و اقسام کارهای مکانیکی ( نورد ، اکستروژن و فلز گری ) را دارند .

ب ) آلیاژ های ریختگی (Casting Alloys) که در شکل ریزی و ریخته گری های آلومینیم با گسترش بسیار مورد استفاده اند . آلیاژ های نوردی که در مباحث شکل دادن فلزات مورد مطالعه قرار می گیرند از طریق یکی از روش های شمش ریزی (مداوم ، نیمه مداوم ، منفرد ) تهیه می گردند و پس از قبول عملیات حرارتی لازم ، تحت تاثیر یکی از زوش های عملیات مکانیکی به شکل نهایی در می آیند .

آلیاژ سازها (Hardeners)

این عناصر که به نام های Temper Alloys و Master Alloysنیز نامیده می شوند به مقدار زیادی در صنایع ریخته گری آلومینیم به کار می روند ، زیرا آلومینیم با نقطه ذوب کم اغلب قادر به ذوب و پذیرش مستقیم عناصر با نقطه ذوب بالا نیست (مس 1083 درجه ، منگنز 1244 درجه ، نیکل 1455 درجه ، سیلیسیم 1415 درجه ، آهن 1539 درجه و تیتانیم 1660درجه سانتی گراد ) . همچنین عناصر دیگری که نقطه ذوب بالا ندارند ، دارای فشار بخار وشدت تصعید و اکسیداسیون می باشند که در صورت استفاده مستقیم درصد اتلاف این عناصر شدیدا افزایش می یابد ( منیزیم ، روی ) . ترکیب شیمیایی و نقطه ذوب بعضی از آلیاژ ها که در صنایع آلومینیم به کار می رود .مشخصات متالوژیکی آلیاژ ها در فصل جداگانه ای مورد مطالعه قرار خواهد گرفت . تهیه آلیاژ ساز ها معمولا در کار گاههای ریخته گری نیز انجام می گیرد در این مواقع اغلب روش های زیر مورد استفاده است .

معمولا قطعات عنصر دیر ذوب را ریز نموده و در فویل های الومینیمی پیچیده و یا در شناور های گرافیتی قرار داده ودر داخل مذاب الومینیم (800 درجه تا 850 درجه تحت فلاکس )فرو می برند و سپس آن را به هم میزنند.

احیاء کننده ها

اکسید آلومینیم به سهوات توسط عناصر دیگر احیاء می شود و فقط عناصر محدودی مانند کلسیم ، منیزیم، لیتم و برلیم قادر به احیاء آلومینیم می باشند . ولی اکسید های کلسیم و منیزیم به سرعت با اکسید آلومینیم ترکیب می شده و اکسید های مضاعف (اسپینل ) تشکیل می دهند و از این رو برای خروج اکسیدهای آلومینیم اثرات منفی ندارد . در مقابل برلیم بریا کلیه آلیاژ های آلومینیم و به خصوص آلومینیم ، منیزیم توصیه شده است .

اکسید برلیم علاوه برقابلیت احیاء اکسید های آلومینیم و منیزیم ، می تواند اکسید فیلم غیر متخلخل در سطح مذاب تشکیل دهد و مانع از اکسیده شدن بیشتر مذاب شود .

با توجه به این که فاکتور تخلخل BeO برابر 4 می باشد در حالی که این فاکتور برای نزدیک 2 و برای MgO8/0است ،چگونگی حفاظت سطح مذاب توسط اکسید فیلم مشخص می گردد .

برلیم در شمش ها و قطعات آمیژن با 5/1% برلیم و یا به صورت ترکیب به مذاب اضافه می گردد .

لیتیم نیز که به صورت لیتیم فلزی و یا فلوئور لیتیم Fli به مذاب آلومینیم افزوده می شود ، در تقلیل مقدار اکسید های آلومینیم و منیزیم تاثیر بسیاری دارد . ول مشخصات کلی آن از بلریم نا مطلوب تر است ، زیرا قادر به تشکیل اکسید غیر متخلخل است و محافظت فلز را مانند برلیم انجام نمی دهد و از طرف دیگر به دلیل نقطه ذوب پایین ممکن است در مذاب حل شود

در خاتمه این مبحث لازم به توضیح است که عناصری قادر به احیاء و استفاده در صنایع ذوب آلومینیم هستند که مشخصات زیر را داشته باشند :

1ـ نقطه ذوب و تبخیر بالا

2ـ وزن اتمی کم

3ـ وزن مخصوص کم

4ـ قطر اتمی کوچک

و در بین عناصر ، برلیم مشخصات فوق را به طور کامل دارد و از این رو استفاده از آن در صنایع آلومینیم بیش از عناصر دیگر به عمل می آید .

فلاکس های گازی

اکسید ها و مواد غیر فلزی شناور در مذاب می تواند با فلاکس های گازی فعال مانند و یا ترکیبات قابل تبخیر مانند از مذاب خارج می شوند . گرچه عناصر فوق برای گاز زدایی به کار می روند ولی در جریان خروج از مذاب قادرنند بسیاری از مواد غیر فلزی و آخال ها را به طریق مکانیکی به همراه خود به سطح مذاب انتقال دهند .بهر صورت عمل دگازین با کلرور ها وترکیبات کار تاثیربسیار زیادی در خارج کردن مواد ناخواسته از آلومینیم مذاب دارند ولی بایستی توجه کرد که استفاده از این مواد اغلب با خورندگی بوته و ایجاد گاز سمی روبرو می باشد . فلاکس های حاوی کلر باعث اتلاف شدید منیزیم در مذاب می گردد و از این رو در مورد آلیاژ های آلومینیم – منیزیم بیشتر از کلرور منیزیم استفاده می کنند وبه صورت مایع عمل فلاکسینگ را انجام می دهد .

گاز های بی اثر مانند ازت و آرگون تاثیر کمی در تصفیه مذاب از مواد نا خواسته دارند و از این رو عمل فلاکس های کلروره بیشتر در ایجاد ترکیب می باشد که قادر است در فصل مشترک اکسیدها و مواد مذاب قرار گرفته و همراه خود ، آنها را استخراج می سازد .

انواع و اقسام کلر ور ها و فلاکس های قابل تبخیر در ذوب آلومینیم به کار می روند که مهمترین آنها عبارتند از :

استفاده از فلاکس های مختلف بایستی متناسب با ترکیب شیمیایی آلیاژ باشد و در غیر این صورت نا خالصی های فلزی در آلیاژ افزایش می یابند :

هگزاکلرواتان ، جامد می باشد ولی در درجه حرارت مذاب تجزیه شده و با آلیاژ ترکیب می شود در این حالت یکی و یا تمام فعل و انفعالات زیر امکان پذیر می باشد .

تصفیه : فیلتر کردن

به دلایل اشکالات متالوژیکی ناشی از مصرف فلاکس ها ، سیستم فیلتر کردن در صنایع الومینیم توسعه روز افزون یافته است و این امر با استفاده از مواد متخلخل در سیستم های راهگاهی و یا در مخازن نگهداری مذاب و یا در سیستم های فیلتر مجزا انجام می گیرد که هر یک در نوع خود از مزایا و محدودیت هایی بر خوردار است .

قسمت سختی سنجی :

برای سنجش میزان سختی قطعات تولید شده از روش برینل استفاده می شود در این روش با اعمال نیرویی بر روی قطعه به وسیله ساچمه ای به قطر 10 میلیمتر میزان سختی جسم را اندازه می گیرد گلوله در قطعه فرو می رود تا زمانی که جسم زیر گلوله مقاومت کند اگر جسم سخت باشد از ماده ای به نام کاربید تنکستن (wc) استفاده می شود زمان اعمال نیرو 30 ثانیه می باشد اگر ماده نرم باشد 500 کیلوگرم بدان نیرو وارد می شود بعد از اعمال نیرو به وسیله میکروسکوپ چشمی قطر اثر نیرو را دیده و اندازه گیری
می کنند .

در این قسمت برای وارد کردن نیرو به قطعه از وزن 750 کیلوگرم استفاده می کنند نرمال سختی قطعه بین 100 الی 120 برینل می باشند بعد از این مرحله قطعه را با میکروسکوپ مجهز بازیننی می کننند تا ساختار کریستالی قطعه مشخص شود ساختار باید به صورت Modifire یا اصلاح شده باشد هنگام دیدن ساختار قطعه در زیر میکروسکوپ ذرات سیلیسم به صورت پیوسته و توری شکل در زمینه AL قرار می گیرند .

وجود ساختار سوزنی سر سیلندر باعث می شوند که قطعه هنگام شوک حرارتی یا حتی شوک مکانیکی ترک بخورد بنابراین اگر قطعاتی وجود داشته باشد که دارای ساختار سوزنی باشند را دوباره به قسمت ذوب برگشت داده و دوباره اصلاح ساختاری روی آن صورت می گیرد برای اصلاح ساختار از NA و یا از قرص نئوکلانت استفاده می شود .



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: بررسی، مشخصات، ریخته، ذوب

بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)

پنج‌شنبه 4 آذر 1395

بررسی کاربرد ریخته گری در سیستم های اندازه گیری(متالورژی پودر)



ریخته گری و متالوژی پودر:

مقدمه: ریخته گری در اشکال مختلف آن یکی از مهمترین فرایندهای شکل دهی فلزات می باشد. گرچه روش ریخته گری ماسه ای یک فرایند متنوع بوده و قادر به تولید ریخته با اشکال پیچیده از محدوده زیادی از فلزات می باشد، ولی دقت ابعادی و تشکیل سطح مختلف ساخته شده به این روش نسبتاً ضعیف می باشد. علاوه بر این ریخته گری ماسه ای عموماً برای حجم تولید بالا مناسب نمی باشد. به ویژه در جایی که ریخته ها احتیاج به جزئیات دقیق دارد، جهت از بین بردن این محدودیت ها فرایندهای ریخته‌گری دیگری که هزینه تولید کمتری هم دارند به وجود آمده اند، این روش شامل:

(i) قالب گیری پوسته‌ای

( ii ) قالب‌گیری بسته‌ای

(iii ) دای کاست یا ( ریخته گری حدیده ای که علاوه برفرآیندهای ریخته گری شکل دهی قطعات با استفاده از پودرهای فلزی نیز شامل این فصل می باشد.

قالب گیری پوسته ای: این فرآیند را می توان به عنوان فرآیند گسترش داده شده ریخته گری ماسه ای دانست. اصولاً این روش از 2 نیمه مصرف شدنی قالب یا پوسته قالب از ماسه مخلوط شده با یک چسب مناسب جهت ایجاد استحکام در برابر وزن فلز ریخته شده، پخته شده است تشکیل می شود.


شکل دهی پوسته:

برای تشکیل پوسته ابتدا یک نیم الگوی فلزی ساخته می شود که معمولاً از جنس فولاد یا برنج می باشد و به صفحه الگو چسبانده می شود. یک الگوی راه گاه بر روی این صفحه تعبیه می شود. بر روی الگو یک زاویه 1 تا 2 درجه برای راحت جدا شدن ایجاد می شود. همچنین بر روی صفحه الگو دستگیره هایی برای جدا کردن صفحات ایجاد می شود.

پخت جزعی: این مجموعه تا درجه حرارت در کوره یا توسط هیترهای مقاوم الکتریکی که در داخل الگو نصب شده اند گرم می شوند. از هر کدام از روشهای حرارت دهی که استفاده شده باشد صفحه الگو به جعبه های ماسه مخلوط شود. با چسب تر متوسط متصل می شود این جعبه سپس وارونه شده تا مخلوط ماسه و چسب بر روی الگوی حرارت دیده ریخته شود تا رزین یا چسب ذوب شده و باعث چسبیدن ماسه شود. پس از 10 تا 20 ثانیه را برگردانده تا یک لایه ( حدوداً نیمه پخته شده پوسته که به الگو چسبیده باقی بماند.

پخت نهایی و ریزش:

مجموعه صفحه الگو به همراه پوسته به داخل کوره براه شده تا پخته نهایی در درجه حرارت 300 الی در مدت زمان 1 الی 5 دقیقه صورت گیرد. زمان و درجه حرارت دقیق جهت این کار بستگی به نوع رزین مصرف شده دارد. پس از پخت پوسته از صفحه الگو جدا می شود هر دوی پوسته ها به این روش ساخته می شود. و قالب به هم چسباندن 2 نیمه توسط چسب یا کلمپ یا پیچ کامل می شود.





قالب همگون آماده ریختن می باشد. در جاهایی که احتیاج به قسمتهای تو خالی
می باشد. فنری قرار داده می شود و این ماسه مشابه روش ریخته گری ماسه ای انجام
نمی شود. مراحل ساخت یک پوسته قالب در شکل (1. 2) نشان داده شده است.

مراحل تهیه و ساخت قالب گری پوسته ای:

در مقایسه با روش ریخته گری ماسه ای قالب گیری پوسته ای دارای مزایای زیر
می باشد:

a) دقت ابعادی بهتر یا تلرانس ( ).

b) تکمیل سطح بهتر یا قابلیت دوباره تولید جزئیات دقیق تر.

c) این فرآیند جهت کارکردهای غیر ماهر یا با مهارت کم می توانند استفاده کنند.

اشکال این روش قسمت بالای الگوها و ماسه قالب گیری آنها می باشد. ( هر چند ) چون فرآیند نیمه مکانیزه می باشد زمان تولید یک پوسته قالب در مقایسه با ساخت یک قالب برای ریخته گری ماسه ای به صورت قالب ملاحظه ای کمتر می باشد. بنابراین این فرآیند جهت تولید ریخته اثر بالا که هزینه های اولیه در آن قابل جبران می باشد مناسب می باشد.

قالب گیری Invesment ) (بسته‌ای)

این روش ریخته گری قدمتی مانند ریخته گری ماسه ای دارد توسط قدیمیان جهت ساخت قطعات با جزئیات دقیق مانند دسته شمشیر و جواهرات مورد استفاده قرار گرفته است. در طول قرن ها این فرآیند محدود شده بود به مجسمه های برنزی و به درستی تنی فرآیندی است که امروزه در این حرفه مورد استفاده قرار می گیرد در پانزده سال اولیه این قرن بوده که قالب گیری Invesmemt جهت فرآیندهای صنعتی به ویژه در جابه جائی که ریخته ها با دقت ابعادی و تکمیل سطح بالا مورد نیاز است مناسب تشخیص داده شده.

اساساً رویه فوم از مراحل ساختن و شکل دادن تشکیل شده است که از مواد نسوز (مقاوم در مقابل حوادث ) برای شکل دادن قالب پوشانده می شود.

وقتی پوشانده سخت می شود فوم مذاب از حفره های قالب بیرون زده و از آهن مذاب پر می شود. زمانی که آهن مذاب به درجه انجماد رسید و قالب نسوز شکسته
شد، چدن ریخته گری ظاهر می شود.

I) مدل ساخته می شود. II) مدل پوشانده می شود. III ) آهن ریخته گری می شود.

ساختن مدل

برای رویه فوم به یک قالب دو نیمه ای لازم است که اساساً از یک یا دو روش زیر ساخته می شود.

1) زمانیکه انتظار دوام طولانی داشته باشیم، قالبها معمولاً از آهن، استیل، برنج، آلومینیوم ساخته می شوند. شکل معکوس قالب را در فلز تراش داده و آن را برای راحتی انقباض مقداری بزرگ می سازند، که مقدار دقت و مهارت در این مرحله خیلی بالاست. دقیقاً مانند مرحله ساخت قالبهای پلاستکی.





2) اگر دوام قالب مهم نباشد. از قالبهای ارزانی که با آلیاژ های نقطه ذوب پائین ساخته شده استفاده می شود. مراحل در شکل (2-2) نشان داده شده است.


اولین لازمه قالب اصلی است که از برنج یا استیل ساخته شده است که از سطح صاف و صیقلی ساخته شده، برای انقباض موم مقداری اندازه آن را بزرگ می سازند. شکل تا

عمق نصف قالب داخل ماسه فرو می رود و قالب استیلی دور بقیه شکل قرار داده میشود و با آلیاژهای بانقطه ذوب پائین 19 درجه سانتیگراد پر میشود.

پس از انجماد شدن آلیاژ دو نیمه قالب از هم جدا می شود و ماسه اطراف آن عوض میشود با همان آلیاژ نقطه ذوب پائین مانند قبل.

هر کدام از روشهای ساخت نوع قالب استفاده شده را معین می کند. و پس از انتخاب موم گداخته شده را داخل آن تزریق می کنیم و آن را مونتاژ می کنیم. بعد از انجماد موم قالب را دو نیمه کرده و موم شکل گرفته را از آن خارج می کنیم.





پوشاندن مدل:

به پوشش نسوزی که به روی شکل کشیده می شود که قالب را تکمیل کند و به آن پوشاننده می گویند. و در دو مرحله انجام می گیرد.

پوشانده اولیه از رنگ کردن یا فرو بردن شکل در آبی که مخلوطی از سدیم سلیکات و اکسید کرومیک و آرد زارگون است تشکیل شده قبل از خشک شدن پوشش معمولاً مقداری پودر خاک نرم روی آن ریخته، برای پوشاندن و زمینه را برای پوشاندن نهائی فراهم می کند. بعد از خشک شدن یک قالب فلزی دور شکل پوشیده شده می گیرند و با پوشش دوم که معمولاً از موادی که آب با آلومینیوم گداخته شده یا خاک رس مذاب تشکیل شده پر می کنند. برای اطمینان مواد نسوز دور اولین لایه پوشش را فرا می گیرد و معمولاً قالب را تکان می دهند. قالب را در کوره با درجه حرارت کم قرار می دهند تا اینکه هم پوشش سخت می شود و هم موم ذوب می شود و از قالب خارج می شود که در دفعات بعد استفاده شود. این مراحل معمولاً 8 ساعت در دمای 95 درجه سانتیگراد طول می کشد. زمان و حرارت دقیقاً به نوع جنس موم بستگی دارد. سپس درجه حرارت تا 1000 درجه سانتیگراد افزایش می یابد. تا اینکه قالب کاملاً سخت شده و هیچگونه اثری از موم باقی نماند. قالب برای قالبگیری آماده است. (در شکل 4-2)





قالب گیری فلز:

زمانیکه قالب گرم است آنرا در کوره ای که با برق گرم می شود و مواد مذاب در آن موجود است قرار می دهند (شکل 5-2) در درجه حرارت مناسب کوره را بر عکس کرده تا مواد مذاب وارد قالب شود. برای اطمینان از اینکه مواد مذاب درون تمام حفره‌ها را پر کرده، معمولاً مواد را با فشار زیاد تزریق می کنند. بصورتیکه تمام جزئیات نشان داده شود. سپس بعد از سرد شدن (انجماد) قالب کوره به حالت اولیه برگردانده می شود و قالب برداشته می شود. سپس با چکش های باید و قلم مواد را از قالب خارج
می کنند.





مزایای پوشاندن قطعه:

برتریهای این رویه بطور خلاصه در زیر توضیح داده شده است.

الف ) این نوع قالب گیری دقت دقیقی دارد و با تلرانس 8/0+ میلی متر ممکن است.

ب ) سطح صیقلی بسیار مناسبی دارد که دیگر به صاف کاری احتیاج ندارد و این در قالب گیریهائی که با فلز درست می شوند و سخت هستند مهم می باشد، برای عملیات دوباره صاف کاری (آلیاژهای کروم و نیکل) در پروانه توربینها استفاده می شود.

برتریهای این رویه بطور خلاصه در زیر توضیح داده شده است.

الف) این نوع قالب گیری دقت دقیقی دارد و با تلرانس 8/0 + میلی متر ممکن است.

ب) سطح صیقلی بسیار مناسبی دارد که دیگر به صاف کاری احتیاج ندارد و این در قالب گیریهائی که با فلز درست می شوند و سخت هستند مهم می باشد، برای عملیات دوباره صاف کاری ( آلیاژهای کروم و نیکل ) در پروانه توربینها استفاده می شود.

ج) از آنجائی که شکل موم دقیقاً مانند قالب نهائی است و تمام قسمتها مشخص
می شود و به قطعات ریز دیگر احتیاجی نمی باشد.

د) قطعات ممکن است در یک واحد درست بشوند. اگر از روش دیگر استفاده
می گردید، ممکن بود قطعه از چند قسمت تشکیل شود و در کنار همدیگر مونتاژ شود.

شکل اصلی این رویه این است که وسایل و هزینه تولید بسیار بالاست ولی چون تراشکاری اضافی احتیاج نمی باشد. مانند قالب گیریهای دیگر این هزینه سنگین با صرفه و مورد قبول است.

قالب ریخته گری فلزی:

در قالب گیری که توضیح دادیم از پوششهای مصرفی استفاده می کنیم. ولی قالبهای ریخته گری بر مبنای استفاده از قالبهای فلزی دائمی است که به اسم قالبها می باشند. از آنجائیکه طراحی و تولیدشان گران است و از ماشین های گران قیمت استفاده می شود. این روش زمانی اقتصادی است که در حجم زیاد تولید شود.

فلزقالب ریخته گری فلز:

فلز مورد استفاده برای قالب ریخته گری بطور کلی محدود به گروهی از فلزات غیر آهنی است، بدین ترتیب برای مدت زیادی عمر می کنند که نقطه ذوب آنها پایین تر از آلیاژها است.

دو شرط در این است که باید سیالیت خوب داشته باشند و در ضمن در برابر «تردی داغ» هم حساس نباشد. تردی داغ عبارتی است که برای توصیف تردی قطعات ریختگی در دمای بالا به کار می رود آلیاژهای مورد استفاده شامل آلیاژهای پایه آلومینوم روی منیزیم قلع و سرب و به مقدار محدودی برنج و برنز هستند تا کنون رایج ترین فلزات مورد استفاده در این روش آلیاژهای پایه آلومینیوم به صورت زیر است:

مس 4% سیلسیم 5% آهن 3% نیکل 2% و منیزیم 5/0% از قطعات ریخته گری تحت فشار آلومینیوم در جاهایی استفاده می شود که نسبت به استحکام به وزن بالایی موردنیاز است یک آلیاژ پایه روی معمولی شامل 4% آلومینیوم 7/2% مس و 3% منیزیم است این آلیاژ خواص ریخته گری خوبی دارد و به علاوه این مزیت را هم دارد که دمای ریخته گری آن در مقایسه با آلیاژهای پایه قلع و سرب محدود است کاربرد اصلی آنها در ساخت یاتاقانهای فشار پایین و قطعاتی دیگر است که در آنها استحکام یک فاکتور با اهمیت نیست آلیاژهای منیزیم که گاهی اوقات با نام تجاری Elektron شناخته می شوند در بین آلیاژهای فوق از همه سبکتر هستند و در جایی استفاده می شود که مسئله وزن و مقاومت در برابر خوردگی بهترین ملاحظات موجود باشند.

فرآیند دای کست (ریخته گری تحت فشار)

ریخته گری تحت فشار به طور عمده شامل دو نوع فرایند است.

1) ثقلی 2) فشار بالا (تحت فشار)



لنزهای موازی

فعالیت این لنز از فشرده سازی منبع نور در میله نوری موازی می باشد، این اندازه‌گیری پرتو افکن برای کار اهمیت بسیاری دارد که با تابش نور روشن شده توسط میله موازی نوری اندازه ثابتی را پرتو افکن می نماید.

با مطالعه تصویر 12. 3 به این اصل پی خواهید برد.





پروژه عدسی

عمل کرد این نوع عدسی ها به این صورت است که یک تصویری از عملکرد وابسته و مناسب بزرگ سازی و توسعه در روی پروژه می باشد.

نوع بزرگ سازی سودمند مفید آن شامل درصدهای یعنی از 10، 15، 25، 50، 100
می باشد در این پروژه عدسی نشان می دهد که در شکل 11. 3 که مشابه عدسی گفته شده می باشد که کفایت کننده آن می باشد.

از نوعی از عدسی های نامناسب برای پروژه های برنامه نویسی استفاده می شود. هر چند که این نوع ممکن است احیاء کننده با ملاحظه توسط فرهنگ نوری باشد که در یک نوع سیستم کلی عدسی به کار می رود که در شکل 13. 3 نمایش داده می شود.




انواع پرتو افکن ها

در ابتدا استحکام و درست شدن پرتو افکن ها از وسایل موجود در کارگاه ها و در میان پیوستگی انجام می شد عدسی ها منبعی برای روشن سازی استفاده می شود. این پرده و عدسی ها ثابت بود و در روی دیوار که پروژه تصویری روی آن انجام می شد مطابق کار پرتو افکن ها ایجاد می شود.

این سیستم یک اشکالی دارا بود که در وضعیت اصلی و در یک مساحت کم بزرگ سازی می کرد که برای دوربین مخصوص فواصل دور استفاده می شد.

پرتو افکن های امروزی هر چند دارای یک نظام بسته کاملاً نوری بودند که در یک محفظه بسته مناسب وجود دارد. که این محفظه ممکن است عمودی یا از نوع افقی باشد که در شکل 14. 3 نمایش داده شده است.






روشهای اندازه گیری

روشهای اندازه‌گیری در این پروژه اندازه‌گیری یک روش ساده بوسیله بکار بردن قانون فولادها می‌باشد. این روش معقول قوانین فولادی می‌تواند بکار برده شود.

برای اندازه‌گیری با دقت از mm 3/0 میلیمتر بکار می‌رود و اگر چه بوسیله این دقت کار به خوبی انجام شدنی می‌باشد که با زیاد کردن دورهای بزرگ سازی می‌توان آن را بهتر کرد.

این بدان منظور است که برای مثال وقتیکه یک بزرگ سازی از ضریب15 را به کار می‌بریم وقت واقعی وابسته به آن انجام می‌شود تا بزرگی آن به 02/0، 15/3 میلیمتر برسد.

برای راحتی و بالا بردن اعتبار معمولاً اندازه‌گیری خطی ابعاد متناسب با پایه انجام می‌شود.

این اختراع واحد اندازه‌گیری برای این کار بود که در یک وسیله حرکت برای کنترل مقدار عددی در دو صورت هدایت کننده می‌باشد که در درجه یکدیگر را در بخش افقی مماس هم می کنند. این کار برد اولین موقعیت در مقابل یک ماخذ و منبع در به شکل درآوردن یک خط عرضی و مارپیچ روی پرده و مطالعه روی یک میکرومتر مناسب می‌باشد و در آن منبع یک میکرومتر دیگری مطالعه می‌شود که تفاوتهایی که در این دو مطالعه وجود دارد که نشانگر دقت ابعاد اندازه‌گیری گوشه‌ای از این ابعاد ممکن است از نظر مقدار مشابه روش قبلی باشد که در این دقت یک پرده سنجش را انجام داده که به طور واحد به کار برده می‌شود. که این کار با یک کنترل کننده مقدار میکرومتر یا درجه‌بندی فرعی تنظیم می‌شود که در شکل 15/3 نمایش داده می‌شود.





پروژه‌ای از نمودارهای پیچیده:

در بازرسی و بازدید پروژة نوری بکار برده شده و رسیدگی کردن اجزائی از شکل پیچیدة e.g که شکل ابزار و نوعی نمودار فرانوری می‌باشد. این کار اغلب دست یابی بوسیله سنجش نمودار با یک الگو می‌باشد. این آمادگی مخصوص بوسیله بزرگی نقشهای نمودار می‌باشد که ( متناظر با بزرگ‌سازی نوری ) وابسته به یک فیلم و اشکال شفاف کننده می‌باشد.که معمولاً نصب می‌شود در روی شیشه برای محافظت از نور نصب می‌شود و عموماً وقتی که این منبع در جلو قرار می‌گیرد انجام می‌شود و تلرانس اجزاء متعلق به آن نمایش داده می‌شود. بنابراین ساختن آن ممکن است با تاریخچه دایر کردن آن یکی شود. اگر اجزاء درون آن در اندازه مخصوص ساخته شده باشد وقتی که پروژه نوری که در شکل وجود دارد مانند پیچاندن باریک خطی می باشد که این کار بوسیله هجوسازی اشکال انجام می‌شود که در شکل 16/3 نمایش داده می‌شود که شکل مورد نظر به دو صورت a b می‌باشد که هر دو شکل در صفحة بعد نمایش داده می‌شود.



روشن است که یکی از مؤثرترین هم تراز کننده یک ریسمان مارپیچ است که این کار با هجوسازی ممکن است. معمول‌ترین کار قبول مدل این پروژه می‌باشد. که اول سنجش شکل خارجی نقطه اثر که از خارج آن اندازه‌گیری می‌شود.

این هجوسازی یک نوع بلعیدگر و همچنین که این حاشیه و لبه پوشیده می‌شود. بعد از این که نشان دادن شکل ممکن شد برای سیمای درونی نقاط و تولید نقاط و پیدا کردن صحیح نمودار می‌باشد.

شکل درونی هر یک از اشکال باریک نمی‌تواند بصورت یک پروژه مستقیم باشد. تنها راه ممکن پیروزی این مسئله در ساختن یک پروژة صحیح و کلی از همان راه برای اشکال باریک می‌باشد. در این روش از اشکال باریک مهم‌ترین عمل آن است که در بخش خارجی آن را غیر جدی گرفته شود و بی‌توجهی همچنین به کوچکترین شکل خطری از تعریف آن می‌باشد.


فهرست مطالب

ریخته گری و متالوژی پودر ۶
شکل دهی پوسته ۷
پخت نهایی و ریزش ۷
مراحل تهیه و ساخت قالب گری پوسته ای ۸
قالب گیری Invesment ) (بسته‌ای) ۹
پوشاندن مدل ۱۲
قالب گیری فلز ۱۳
مزایای پوشاندن قطعه ۱۴
قالب ریخته گری فلزی ۱۵
فلزقالب ریخته گری فلز ۱۵
دای کست ثقلی ۱۶
دای کست تحت فشار (فشار بالا) ۱۷
قالب های ریخته گری تحت فشار ( دای کست ) ۲۰
ویژگیهای مراحل مختلف قالب ریزی ۲۲
متالوژی پودری ۲۲
همگن سازی ۲۴
محدودیت ها و ملاحظات طرح ۲۵
اندازه گیر ۲۸
تطبیق گرها ۲۸
تطبیق گر مکانیکی ۲۹
تطبیق گر با تسمه پیچشی ۳۰
تطبیق گر الکترونیک ۳۲
تطبیق گر نوری ۳۴
روش های اندازه گیری فشار باد ۳۵
روشهای اندازه گیری ۳۷
لنزهای موازی ۴۱
پروژه عدسی ۴۱
انواع پرتو افکن ها ۴۲
روشهای اندازه گیری ۴۳
پروژه‌ای از نمودارهای پیچیده ۴۴
کاربردهای اتوکولیماتور ۴۹
اندازه گیری گوشه‌ها و زوایا ۵۳
زاویه دکور: ( Dekkor ) 54
تراز دقیق ۵۶
اندازه‌گیری سطح تمام شده ۵۷
آرایش ۵۸
سیستم اندازه‌گیری ۵۸
روشهای اندازه‌گیری ۵۹
وسایل ثبت الکتریکی ۶۲
آزمایشات برای مرغک ماشین تراش ۶۴
محور موازنه ماسوره با بخش متحرک ماشین تراش ۶۵
گونیای متحرک لغزنده مقطع ( عرضی ) با محور ماسوره ۶۶
محور موازنه انتهای بدنه تیغه همراه با بستر ۶۷
آزمایش هایی برای ماشین های فرز افقی ۶۷
میز متحرک موازی با تی اسلات مرکزی ۶۷
گونیای محور ماسوره‌ای با تی اسلات مرکزی ۶۸
میز گونیای شکل با استفاده از شیوه‌های عمودی ۶۹
آزمایش‌های ماشین‌های سوراخکاری ۷۰
حدود و انطباق‌ها ۷۲
سیستم های محدودیات و تناسبها ( timit -&-fits ) 76
انحراف اساسی ۷۷
تعیین نوع اندازه مبنا ۷۹
حد اندازه‌گیری ۸۱
تلرانسهای مقیاسی ( نمونه ) و دقت مجاز فرسایشی ۸۳



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

بررسی صنعت ریخته گری (خاک)

پنج‌شنبه 4 آذر 1395

بررسی صنعت ریخته گری (خاک)


مقاله 1:

انواع مختلفی از خاک در جهان وجود دارند که بسیاری از آنها در صنعت ریخته گری آزمایش شده اند اما سه نوع اصلی که در این صنعت بکار می روند شامل کائولن (خاک نسوزط)، مونت موریلونیت (بنتونیت) و ایلیت می باشند. مونت موریلونیت مهم ترین کانی بنتونیت بود9 که از یک ساختار سه لایه صفحه ای تشکیل شده است. 2 لایه از تتراهدلا سیلیسییم – اکسیژن و یک لایه دی اکتاهدرال یا تری اکتاهدرال هیدوکسیل آلومینیم (گیبسیت). لایه میانی‌ آلومینیوم از اکتاهدرالی با یک اتم آهن که توسط شش واحد هیدلوکسیل محاصره شده تشکیل گردیده است. به شکلهای 1 و 2 مراجعه کنید.

خاک های سدیمی، کلسیمی . و بنتونیت های فعال شده دراین خانواده قرار گرفته و به میزان فراوانی در صنعت ریختهگری استفاده می شوند. کائولن از دو لایه ساختاری تشکیل شده است یک لایه اکتاهیدال آلومینیم و یک لایه تتراهیدال الومینیم و یک لایه تتراهدرال سیلیسیم. لایه سیلیسیم از یک اتم سیلیسیم و 4 اتم اکسیژت تشکیل شده است.

خاک نسوز، خاک چینی، کائولینیت و خاک رس دراین خانواده قرار می گیرد. در صنایع مدرن بریخته گری بندرت از این خاکها استفاده می‌شود.


ایلیت خاکی با نسوزندگی ضعیف است. این خاک غالبا در ماسه های طبیعی دیده شده اما در ماسه های مصنوعی هیچگاه افزوده نمی‌شود.

مونت موریلونیت دارای یک صفحه میانی هیدروکسیل آلومینیوم است که بین دو لایه اکسید سیلیسیم آلومینیم است که بین دو لایه اکسید سیلیسیم قرار گرفته است. بخشی از آلومینیم توسط منیزیم جانشین شده که یک حالت عدم تعادلی یونی را به وجود می آورد. تعادل یونی را می توان با افزودن سدیم، کلسیم یا منیزیم بدتس آورد که این عمل تبادل یونی نامیده می‌شود.

در صنایع جدید ریخته گری ، برخی خاکهای مورد استفاده از نوع تبادل یونی (فعال شده) هستند. دو نوع مونت موریلونیت مهم که در آن صنعت ریخته گری بکار می‌روند عبارتند از :

الف) بنتونیت سدیم که با خاصیت تورم زیاد شناخته می‌شود.

ب) بنتونیت کلسیمی که تورم پذیری کلسیمی هستند که با نمکهای سدیم نظیر کربنات سدیم فرآوری شده تاند تا خواص خاک بهبود یابد.این فعال سازی بودن آنکه باعث کاهش استحکام خشک گردد، موجب بهبود پایداری خواص شده و عیوب ناشی از انبساط را کاهش می دهد.

عمل فعال سازی می‌تواند به صورت «تر» یا «خشک» انجام شود اما نتایج بررسیها نشان می دهند که فعال سازی «تر» خواص بهتری را بدست می دهد.

بنتونیت های سدیمی، کلسیمی و خاک های تبادل بودن کره، هر یک خواص منسبی دارند. انتخاب نوع خاک به خواص مورد نیاز و مسائل اقتصادی ازتباط دارد. در صنعت ریخته گری فولاد، برای ریخته گری چدن و فلزات غیر آهنی درماسه‌تر معمولاً از بنتونیت کلسیمی یا بنتونیت فعال شده یا مخلوطی از ینتونیت سدیمی/کلسیمی استفاده می‌شود. هر کارخانه ریته گری باید نیازمندیهای خود را شندهته و بر آن اساس نوع خاک مناسب را انتخاب کند. ازیک خاک یا مخلوطی از خاک ها می توان در اغلب موارد برای دست یابی به خواص مورد نظر استفاده کرد. در فرآیندهای قالب گیری ماشینی با فشار بالا، این انتخاب اهمیت بیشتری داشته و معمولاً برای بهبود عملکرد، افزودنی دیگرنیز به ماسه اضافه می شوند.

مقاله 2: چسب های زرین نوع فوران ابتدا در سال 1958 به عنوان سیستم =سب فوران بدون پخت اسید کاتالیز شده معرفی شدند. دو سال بعد صنعت اتومایتو این رزین ‌ها را اصلاح کرد تا به کاتالیزورهای نمکی اسید عمل کنند تا در ماهیچه های Hotbox استفاده شود سپس در اوایل دهه 80 (زرین های فوران به عنوان بزرگترین سیستم فروش بدون پخت تبدیل شدند.

چسب های فوران بدون پخت (سردگیر ) در تهیه قالبهای ماسه ای در ریخته گری قطعات چدنی و فولادی کاربرد زیادی پیدا کرده اند. در این پژوهش متغیرها موثر در سخت شدن چسب شامل: درصد کاتالیست، رطوبت ماسه، اثر دمای محیط و فاصله زمانی بین سنجش استحام و زمان قالبگیری مورد بررسی قرار گرفته است. نهایتا شرایط بهینه قالب گیری چسب فوران با کاتالیست اسیدتولوئن سولفونیک به دست آمد. در این شرایط استحکام فشاری ماسه برابر 400، عبود گاز آن AFS 130، وز مان عمر مفید این ماسه برابر 20 دقیقه تعیین گردید.

چسب های فوارن بدون پخت (سردگیر) ر تهیه قالب های ماسه ایدر ریخته‌گری قطعات چدنی فولادی کاربرد زیادی پیدا کرده اند. سیستم چسبهای فورانی بدون پخت (No- boke) دراواخر سال 1950 به صنعت ریخته گری معرفی شد و از سال 1960 تاکنون به طور گسترده ای در صنایع ریخته گری کشورهای جهان استفاده می‌شود. پایه چسبهای فورانی. الکل فورقوریل با فرمول شیمیایی C4H3OCH2OH است که از فورفورال تهیه می‌شود. فورفورال نیز خود از ت0حول بقایای محصولات غذاییی همچون غلات، پوست جو ، تفاله نیشکر و غیره بدست می آید. درجه چسب فوران با استفادهاز مقدار آب و نیتروژن و میزان فورفوریل الکل پایین برای ریخته گری و ماهیچه سازی چدن و آلیاژهای کم و یا بع عبارتی با فورفوریل الکل زیاد برای ریخته گری و ماهیچه سازی قطعات فولادی بکار برده می شوند. یکی از انواع خاص چسبهایفورانی سردگیر چسبهای بدون نیتروژن است. وجود نیتروژن باعث افزایش طول مدت نگهداری چسب می‌شود. وجود نیتروژن باعث افزایش طول مدت نگهداری چسب می‌شود ولی از طرفی وجود آن در بسیاری از موارد با تشکیل گاز، باعث ایجاد عیوب ریخته گری می‌شود که اغلب از نوع تخلخل و حفره ای بوده و خطرناک می باشند. نیتروژن همچنین ممکن است تخلخل های زیر سطحی ایجاد کند. برای بکار بدن این چسب در قالب گیری، ابتدا ماسه را با یک کاتالیست یا سخت کننده مخلوط می کنند و سپس چسب فوران را را آن مخلوط می نمایند. انواع کاتالیستهای معمول این چسب به ترتیب افزایش واکنش دهندگی عبارتند از: اسید فسفریک و یا مخلوطی از اسید فسفریک و اسید سولفوریک، آریل سولفونیکها مثل اسید تولئون سفلونیک(TSA) با فرمول شیمیای CH3So3H و اسید بنزن سولفونیک (‌BSA) با فرمول SO­3 H اسید فسفریک ضعیف تین اسید بین اسیدهی مذکوراست.

معمولاً مقداراسید فسفریک لازم جهت افزودن به مخلوط حدود 40 الی 60 درصد وزنی چسب فوران می باشد. بعد از اسید فسفریک امروزه بیشتر از اسیدها آروماتیک TSA و پس از آن BSA که قوی تر است استفاده می‌شود. معمولاً وقتی که ماسه مصرف شده (غیر تازه) باشد یا حالت قلیایی داشته باشد استفاده از BAS مطلوب تر است. افزودن این دواسیددرحدود 20 الی 25 درصد چسب به مخلطو کاسه کافی است. به طول کلی مکانیزم سخت شده چسب در چسبهای سرد فورانی که با اسید سخت می شوند به صورت پلبیمریزاسیوناست. در واقع با وجود یک اسید قوی، زنجییزه های الکل فورفرویل به صورت فیلمی ذرات ماسه را می پوشاند و باعث چسبیدن این ذرات ب9ه هم می شوند. واکنش پلیمریزاسیون این چسب از نوع تراکمی است و محصول جنبی داشته و به صورت زیر می باشد.

این واکن گرمازا است وحرارات ناشی ازآن باعث تسریع پلیمریزاسیون به صولت لایه لایه تا بخشهایمرکزی می‌شود. آب تولید شده از واکنش پلیمریزاسیون برای تکمیل گیرش رزین باید بخیر شود. به همین دلیل گیرش رزین از سطح خارجی قالب به سمت داخل اتفاق می افتد. سرعت واکنش تحت تاثیر عواملی چون دمای ماسه و نوع ماسه، نوع مخلوط کنو سرعت مخلوط کردن ، ترکیب چسب وننع و مقدار عنصر فعال کننده مصرفی قرار دارد. افزایش دمای محیط تا C 0 30 موجب افزایش سرعت‌گیرش و رسیدن به استحکام بالا می‌شود. افزایش رطوبت نیز در دمای ثابت باعث کم شدن سرعت گیرش می‌شود. دمای ماسه تأثیر بسزایی را روی فرآیند پلیمریزتاسیون دارد. درمحدوده دمایی C 0 16 تا C 0 38 استحکامهای مناسب تری بدست می آید. در ضمن هر چه روطوبت نسبی هوا بالاتر رود به دلیل کاهش سرعت تبخیر حاضر در کاتالیست و آب تولید شده از وانش تراکمی‌، استحکام کاهش می‌یابد.

مکانیزم اتصال خاک رس

اتصال تر (Green bond)

مکانیزم اتصال خاک رس (Clay bond) از طریق تشریح وضعیت یک ذره خاک رس هیدراته شده (A hydrated clay particle) که به آن می سل (ءهزثممث) گفته می شود، باین می‌شود.نیروی بین می سل (intermicellet force) شبکه ای درفصل مشترک کوارتز – خاک رس و خاک رس – خاک رس که بواسطه جذب ترجیحی کاتیونها و آنونیونها برروی سطح است.

اصولا اتصال خاک رس با دانه های ماسهزمانی امکان پذیر است که ذات خاک رس هیدارته شده باشد. در خضور مولکول های آب که طبق واکنش زیر تمایل دارند تا هیدرولیز شوند،

H 2 O

ذرات خاک رس ترجیحا یون های هیدروکسیل (OH-) را جذب می کنند. در سطح بلورخاک رس (Clay crystal) پیوندهای ظرفیتی غیر کامل ایجاد می‌شود و ذره خاک رس -‌ آب یک ذره باردار با یک بارمنفی خواهد شد.

کائولینیت در سطح خودداری پیوندهای ظرفیتی منفصل است که این امر باعث افزایش نقاط فعال بروی بلور می‌شود. وقتی آب به یک خاک رس از نوع کائولینیت اضافه می‌شود ، یونهای OH- جذب می شوند اما توسط مرکز خاک رس دفع می شوند تا جایی که موقعیت و شرایط تعادل فراهم شود. کاتیونها موقعیتی را بخود می گیرند که. این موقعیت بگونه ای است که نیروی الکتروایستایی (Electrostatic force) تمایل دارد تا صفر شود و یک می سل خاک رس ایجاد شود. مقدار نیروهای دافعه بواسطه نوع کاتیونهایی چون Na+ و H+ و Ca2+ تعیین می‌شود و تاثیر تلفیقی نیروهای جاذبه و دافعه این تمایل را دارد که ذره خاک رس از نظر بار الکتریکی خنثی شود. در یک ماده قالبگیری، ذرات خاک رس و ذرات کوارتز در زمینه و محیطی از‌آب انتشار یافته و گسترده شده اند، آب باعث تشکیل می سل های خاک رس می‌شود که خنثی شده هستند و انرژی جنبشی آنها باعث می‌شود که بسمت یکدیگر حرکت کنند. در این شرایط، یک نیروی جاذبه مابین یونها غیر همنام پدید می آید ویک نیروی دافعه خاک کاتیونها و هسته خاک رس ظاهر می‌شود. وقتی فاصله بین می سل های خاک رس افزایش می یابد و در نتیجه یک نیروی بین می سل شبکه ای بوجود می آید.

کشش دو می سل بسمت یکدیگر باعث جهت دار شدن و آرایش یونهای غیر همنام بطرف هم می‌شود و در نتیجه یک خاک رس دو قطبی شده تشیکل می‌شود و حداکثر نیروی جاذبه دریک فاصله بهینه (Optimum) برابر با x وجود دارد. احتمال دارد تعداد بسیاری از اینگونه دوقطبی ها در یک محیطی آب – خاک رس بوجود آید و نظم و آرایش مناسبی بخود بگیرند و یک شبکه بهم پیوسته (A Network binding) از ذرات خاک رس هیدارته تشکیل می‌شود.

برحسب نوع ماسه مقدار بار الکتریکی موجود بر سطح ذره متفاوت است و بای تشکیل یک دو قطبی کامل مقدار هیداته شدن خاصی مورد نیاز است. بهمین دلیل است که با افزایش مقدار هیدراته شدن خاص مورد نیاز است. بهمین دلیل است که با افزایش مقدار آب (تایک اندازه خاص) استحکام مخلوط ماسه پیوند یافته با خاک رس افزایش می یابد. وقتی مقدار آب از آن حد خاص که حدبهینه است فراتر رود. آب اضافی بداخل بطوریکه فاصله آنها بیش از اندازه x می‌شود و نیروی می سل شبکه‌ای کاهش می یابد.

فصل مشترک کوراتز خاک رس

سطح کوارتز نیز پیوندهای ظرفیتی منفصل و منقطع دارد و درنتیجه می سل های کوارتز هیدارته شده تشکیل می‌شود. دو قطبی های خاک رس اطراف دانه های کوارتز را احصاطه می کند و برروی سطح ماسه اتصال می یابند. البته نیروی موجود در فصل مشترک کوارتز – خاک رس ضعیف تر از پیوند بین می سل بین دوقطبی های خاک رس است.

اتصال خشک (Dry bond)

در یک ماسه خشک، استحکام با افزایش مقدار‌آب زیاد می‌شود و این ازدیاد تا یک حد خاص ادامه می یابد اما در مورد ماسه های ریخته گری که مقدار آب آنها در محدوده متعارف و معمول است تا شکل پذیری مناسب وجود داشته باشد، فاصله بین دوقطبی های خاک رس همواره بیشتر از مقدار بحرانی (x) است زیرا‌ آب اضافی مابین فضای بین می سل ها قرار می گیرد. در هر حال اگر مجموعه تلفیقی خاک رس – آب – کوارتز باندازه کافی حرارت ببیند تا آب تبخیر شود، دو قطبی ها مجددا بسمت یکدیگر کشیده می شوند و کاهش حجم نیز پدید می آید، هر قدر مدت زمان حرارت دادن مخلوط قالبگیری طولانی تر باشد انقباض (Shrinkage) افزایش می یابد و این امر تا آن زمان که فاصله ما بین دوقطبی ها به حد بحرانی (x) برسد ادامه می یابد. از این پس ادامه حرارت دادن مخلوط قالبگیری اثر کمی بر مقدار استحکام خشک دارد زیرا فاصله رطوبت به حد بحرانی رسیده است.



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: بررسی، صنعت، ریخته، (خاک)

بررسی ریخته گری،درس پوشش فلزات

پنج‌شنبه 4 آذر 1395

بررسی ریخته گری،درس پوشش فلزات


پوشش های تبدیلی

اصطلاح ((پوشش تبدیلی )) به پوششهایی گفته می شود که از طریق واکنش لایه های اتمی سطح فلزات با آنیونهایی که از وسط فلزات ایجاد می شوند .

بنابراین فرایند تشکیل پوشش تبدیلی یک فرایند خوردگی کنترل شده ای است که به طریق مصنوعی ایجاد شده است و نهایتاً برروی سطح فلز لایه ای را ایجاد می کند . این لایه اتصال محکمی با فلز پایه دارد و عملاً در آب و محیط واسطه نامحلول است و عایق الکتریکی خوبی می باشد .

یکی از فرایند های پوششهای تبدیلی فرایند کروماته کردن است که در دو دهه اخیر پیشرفت و گسترش قابل توجهی پیدا کرده است .

کروماته کردن

اصطلاح ((کرماته کردن)) به عملیات شیمیایی و الکترو شیمایی فلزات و پوششهای فلزی محلولهایی گفته می شود که در آنها اسید کرمیک ، کرمات یا دی کرمات باشد . نتیجه چنین عملیاتی ایجاد پوشش محافظ تبدیلی شامل ترکیبات کرم سه ظرفیتی و شش ظرفیتی بر روی سطح فلز است .

خواص جلوگیری از خوردگی فلزات توسط کروماتها به خوبی شناخته شده است . با اضافه کردن مقادیر کمی از این ماده به سیستمهای دارای آب در گردش سطح فلزات را پوشش می دهد و در نتیجه از خوردگی آنها جلوگیری می کند .

پوششهای کرماته در محصولات صنایع ماشین سازی ، الکتریکی ، الکترونیکی ، ارتباطات راه دور و صنایع موتوری خودکار به کار می رود . آنها نیز با جایگزین کردن برخی فلزات معین معین به جای فلزاتی که طول عمر کمتری دارند نقش مهم کاربردی دارند . به عنوان مثال ، می توان از روی کرماته شده که جایگزین فلزات با پوشش کادمیم شده اند نام برد .

مهمترین اهداف استفاده از فلزات کرماته شد عبارتند از :

الف ) افزایش مقاومت به خوردگی فلز یا پوششهای محافظ فلزی ، در حالت اخیر احتمالاً به طولانی شدن زمان ظهور اولین آثار خوردگی بر روی فلز پایه و فلز پوشش منجر خواهد شد .

ب ) کاهش خسارات سطحی ناشی از آثار انگشت (خراشهای سطحی)

ج) افزایش میزان چسبندگی رنگ و سایر پوششهای آلی .

د) رنگ پذیری و یا پذیرش بهتر سایر پوششهای تزئینی .

روشهای عملی کرماته کردن بر اساس نوع عملیات به دو دسته زیر تقسیم می شوند :

الف ) روشهای شیمیایی که فقط شامل فرو بردن قطعات در محلولهای کرماته است .

ب ) روشهای الکتروشیمیایی که شامل فرو بردن قطعات در محلول و اعمال جریان الکتریکی از یک منبع خارجی است .

ج) فرایندی که یک لایه کرماته فشرده برروی سطح تمیز فلزی ایجاد می کند به نحوی که در نهایت به شکل پوشش واقعی در می آید .

د) فرایندی که با استفاده از انواع دیگر پوششها از فلز محافظ می کند . به عنوان مثال پوششهای اکسیدی یا فسفاتی که نوع فسفات آن در فصلهای مربوط به اکسیداسیون و فسفاته کردن بحث شده است .

فرایند کرماته کردن را می توان بهصورت دستی ، نیمه خودکار یا تمام خودکار انجام داد .

توسعه این فرایند به دلیل سهولت عمل و زمان کم آن قابلیت دسترسی همگانی و اقتصادی بودن مواد شیمیایی و بالخره خواص منحصر به فردی است که این نوع پوشش برخوردار است .

بر اساس نظریات و ستچستر مقاومت به خوردگی پوششهای کرماته بهتر از نوع فسفاته آن است . موک نیز که تحقیقاتی در زمینه خواص حفاظتی پوششهای کرماته و مقایسه آن با نوع فسفاته انجام داده ، به نتایج مشابهی رسیده است .

در اولین مرحله ، مقاومت به خوردگی و سایر خواص پوششهای کرمی بستگی تام به فلز پایه (فلزی که پوشش روی آن انجام می گیرد دارد . چگونگی سطح فلز روشهای آماده سازی مختلف کرماته کردن و احتمالاً عملیات اضافی در زمینه پوشش کرم دادن (مثلاُ کاربرد پوشش روغن یا رنگ) دارد. در حالی که از روشهای الکترو شیمیایی برای ایجاد پوشش کرماته استفاده می شود ، چگالی جریان نقش مهمی ایفا می کند).

فرایند کروماته کردن فلزات خاص

اولین بار فرایند کرماته نمودن در سال 1924 و برای فلز منیزیم به کار رفت . پوشش کرماته که در آن زمان به دست آمد مشخصاً یک پوسته بسیار باریک بود و به علت کاربرد روشهای خاص رنگ پوسته قهوه ای یا زیتونی بود و عالباً از محلولهای اسیدی سدیم دی کرمات یا بدون افزایش نمکهای فلزی معین برای منظورهای خاصی استفاده می شد .

بین سالهای 1924تا 1936 چندین روش برای کرماته کردن منیزیم ، روی ، کادمیم ، مس و آلیاژهای آن عرضه شد . از بین این روشها روشی که در آن از یک محلول خاص برای دستیابی به پوشش روشن بر روی کادمیم استفاده می شد کاربردی بیشتری داشت .

بدون شک فرایندی که در ان حمام دی کرمات و اسید سولفوریک به کار می رود ، ارزشمند ترین فرایند است . این فرایند که در سال 1936 ابداع شد ، به فرایند کرونک شهرت یافت . پوشش کرماته ای که از روش بر روی ZN و Cd به دست آمد ، رنگی شبیه زرد یا قهوه ای تیره داشت .

پیشرفتهای بعدی در این زمینه به کاربرد محلولهایی منجر شد که شامل اسید کرمیک و سولفاتها بودند که جهت به دست آمدن سطح و ظاهر روشن سپس در محلولهای اسیدی یا الکلی دقیق شسته می شدند .

در دوران جنگ جهانی دوم روشی ابداع شد که پوشش کرماته به رنگ سبز زیتونی برروی روی و کادمیم به دست آمد . این پوشش در مقایسه با نمونه مات متمایل به قهوه ای که سابقاً تهیه شده بود در مقابلخوردگی مقاومت ببیشتری از خود نشان می داد . علاوه بر ایجاد پوشش سبز زیتونی تهیه پوششهایی به رنگ سیاه و رنگهای دیگر از طریق رنگ کردن پوشش زیتونی نیز امکانپذیر شد .

هنوز بسیاری از فرایند های قدیمی کرماته کردن روی وکادمیم که نیاز به استفاده از محلولهای اسید سولفوریک و دی کرمات با اصطلاحات مختصری دارد ، قابل استفاده اند .



5 از بین بردن پوششهای کرماته

پوششهای کرماته را که به کیفیت مطلوب نرسیده اند ،می توان با فرو بردن قطعه به مدت چند دقیقه در محلول اسید کرمیک (gr/lit 200) داغ از بین برد. برای این منظوراز اسید هیدروکلریک نیز می توان استفاده کرد.

قبل از آن که عملیات کرماته کردن مجدد انجام شود قطعات باید در حمام قلیایی و دو بار در آب شسته شوند.

6 ترکیب حمام پوشش و کنترل آن

مصرف اجزای محلول و جدا شدن آنها باعث افت غلظت محلول کرماته در طی عملیات می شود . علاوه بر این محلول دائماً با آبی که برای شست و شو بر روی سطح قطعات کرماته ریخته می شود ،بنابراین ثابت نگه داشتن ترکیب حمام پوشش نیاز به کنترل ترکیب شیمیایی و جایگزین کردن عناصر مصرف شده از آن دارد .در مواردی که محلول کرماته حجم کمی داشته باشد ،تغییرات غلظت عناصر قابل توجه است و در این موارد بهتر است محلول تازه جایگزین شود.

درطی انجام واکنشهایی که برای تشکیل پوشش کرماته می دهد، یونهای هیدروژن مصرف می شوند و PH محلول کرماته زیاد می شود. این امر باعث کاهش سرعت تشکیل لایه می شود. هنگامی که از محلول کرماته به مدت چند روز یا چند هفته استفاده شد (بستگی به مقدار استفاده از آن )،پوششهایی که در طول مدت معینی از عملیات به دست می آیند نسبت به پوششهایی که از یک محلول تازه به دست می آیند سبکترند. سرعت کم تشکیل لایه را یا با افزایش مدت عملیات و یا باکاهش PH به کمک یک اسید غیر آلی مناسب می توان جبران کرد برای کنترل فرآیند می توان از کاغذهای PH استفاده کرد. استفاده از الکترودهای شیشه ای برای اندازه گیری PH ،.همیشه عملی نیست زیرا وسایل خاصی جهت استفاده از آنها لازم است. علاوه بر آن در مواردی که محلول کرماته حاوی یونهای فلوئورید باشد ،الکترود شیشه ای قابل استفاده نخواهد بود.

مقدرا کرم 6 ظرفیتی در طول عملیات کرماته کردن کاهش می یابد ،با این حال کاهش اسیدکرمیک و دی کرومات غالبا ً‌کمتر از کاهشی است که درکل حجم محلول بر اثر کشیده شدن و ریختن آن به مخزن شست وشو رخ می دهد.

اگر با وجود تصحیح PH ،محلول کرماته عملکرد رضایت بخشی نداشته باشد،ترکیب شیمیایی محلول باید بررسی شود و مقدار یونهای کرم 6 ظرفیتی و همچنین میزان نمک کرم که برای جبران به محلول اضافه می شود محاسبه شود . مقدار کرم 6 ظرفیتی را می توان با یدومتری یا با احیا به وسسیله سولفات آهن و تیتراسیون برگشتی مقدار منگانومتری یونهای آهن تعیین کرد.

در عمل ،بخصوص در واحدهای کوچک ،کنترل حمام محدود به اندازه گیری PH و تصحیح آن در موارد لزوم است . اگر چنین نشود ،محلول تازه ای باید تهیه شود.

باید توجه داشت پوششهایی که در ابتدا از محلول ید تازه به دست می آید ممکن است کیفیت مطلوبی نداشته باشند . اما بعد از اینکه چند نمونه دراین حمام پوشش داده شد ،دردامنه PH معینی بدون آنکه درکیفیت پوشش نوسانات زیادی حاصل شود وتا زمانی که اجزای اصلی حمام به مقدار قابل توجهی مصرف شود ،محلول پوشش ایجاد خواهد کرد.

برای حفظ حمام کرماته استفاده متناوب از برخی افزودنیها مطلوب است .برای یک کار مداوم و یکنواخت می توان بر اساس چند روز یا چند هفته اول عملیات برنامه ای تعیین کرد و بعد از آن کنترل آزمایشگاهی برای دوره های کمتری کافی خواهد بود.

بعد ازاینکه چندین بار مواد افزودنی به حمام افزوده شد ،حمام پوشش کرماته به پایان عمر خود می رسد ،مگر اینکه دفعات تازه سازی محلول زیاد باشد ،میزان کرم احیا شده (3ظرفیتی ) و رسوبهای فلزی از قطعاتی که وارد حمام شده به حدی رسیده است که عملاً‌محلول حمام بدون استفاده می ماند. اغلب اپراتورهای عملیات کرماته کردن می توانند روش ساده ای برای تیتراسیون تهیه کنند و زمانی را که حمام پوشش به نقطه انتهایی خود نزدیک می شود ،تعیین کنند. تشکیل مجدد محلول از طریق تکنیک تعویض یونها با موفقیت میسر است .ولی هنوز روش متداولی نیست .

محلولهای کرماته را نمی توان به طور نامحدود جایگزین کرد ،این کار ،حداکثر دو یا سه بار بیشتر انجام نمی شود. مهمترین عاملی که سبب تعویض حمام می شود کیفیت ضعیف پوشش تشکیل شده بر روی سطح قطعه است ،حتی اگر ترکیب حمام هم ترکیب صحیحی باشد. اگر نگهداری حمام پوشش به اضافه کردن مقادیر بیش از حدی ترکیبهای شیمیایی نیاز داشته باشد نیز این مورد صادق است .مصرف اضافی مواد شیمیایی غالباً‌ بر اثر تشکیل آلودگیهایی مانند ترکیبهای کرم 3 ظرفیتی است که بر اثر واکنش تشکیل پوشش و فلز حل شده قطعه ای که پوشش داده می شود به وجود می آیند علاوه بر آن این مصرف اضافی ناشی از آلودگیهای خارجی نیز می باشد.

تعیین عمر طبیعی یک حمام مشکل است زیرا به عوامل متعددی بستگی دارد. از جمله این عوامل عبارتند از :روش عمل ،بازده تمیز کردن ،آماده سازی سطح قبل از عملیات و بازده شست وشو .




خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

بررسی ریخته گری چدن

پنج‌شنبه 4 آذر 1395

بررسی ریخته گری چدن

چدن ریختگی

مقدمه :

عنوان چدن ریختگی مشخص کننده دسته بزرگی از فلزات است . فلزاتی که در این دسته قرار دارند از نظر خواص با یکدیگر تفاوتهای فاحش دارند . عنوان چدن ریختگی ، همانند عنوان فولاد که مشخص کننده دسته دیگری از فلزات است ، یک عبارت کلی است . فولادها و چدنها در اصل آلیاژ آهن هستند که با کربن ساخته شده اند اما فولاد همواره کمتر از دو درصد کربن داشته و معمولاً درصد کربن آنها از یک درصد بیشتر نمی شود . درحالیکه چدنها بیش از دو درصد کربن دارند. چدنها ی ریختگی گذشته از کربن باید دارای مقادیر قابل توجهی از سیلیسیم باشند که عموماً میزان آن از یک تا سه درصد متغیر است .

تفاوتهای مذکور اختیاری و دلخواه نیست اما همین امر ریشه متالورژیکی و عامل موثری است که سبب میشود خواص مفید و متفاوتی در این دو دسته از گروه فلزات آهنی پدید آید .

امید است این پروژه سهمی در پیشبرد صنعت وتکنولوژی ریخته گری چدن در ایران داشته باشد و مورد استفاده دیگر دانشجویان نیز قرار گیرد .

تقسیم بندی انواع چدنها :

چدن سـفید :

در چدنهای سفید کربن به شکل کاربید آهن یا سمانتیت ظاهر می شود . کاربید آهن ترکیب شیمیایی کربن موجود در مذاب همراه با آهن می باشد بصورت مجموعه ای از اجزاء سخت و شکننده می باشند که به آنها سمانتیت نیز گفته میشود ، کاربید آهن یا سمانتیت تعیین کننده خواص نهایی ریز ساختار می باشد . به همین دلیل چدن سفید اساساً آلیاژی سخت و شکننده است . سطح مقطع شکست این چدن به رنگ سفید بوده و استحکام فشاری زیادی خواهد داشت .

از خواص دیگر این آلیاژها مقاومت عالی در برابر سایش و نیز سختی زیاد را می توان نام برد . در این چدنها سرعت سرد شدن مذاب بسیار زیاد است که برای این منظور معمولاً ریخته گری این نوع چدن در قالب مبرد دار انجام می شود . مبرد مورد استفاده در انجماد این آلیاژها معمولاً از جنس گرافیت یا آهن می باشد در قسمتهای نازک و یا گوشه های تیز از یک قطعه با این جنس یا پره های نازکی که از این جنس استفاده می شود . معمولاًو به طور حتم چدن سفیدتشکیل خواهد شد .

چدن چکشخوار ‌‌ ( مالیبل Malleable ) :

در این چدنها کربن بشکل گرافیت در نقاط مختلف تجمع نموده و شکلهای نا منظمی شبیه به کلوخه را ایجاد می کنند این چدن از نظر ترکیب شیمیایی شبیه به چدن سفید بوده و قطعات چدن چکش خوار را در ابتدا می توان از چدن سفید تهیه نمود بدین صورت که ابتد ا چدن سفید ریخته گری شده و سپس با انجام یک عملیات حرارتی کربن را به صورت گرافیت کروی در زمینه راسب ( رسوب ) می کنند . ضخامت قطعه های چدن چکش خوار معمولاً محدود و ضخامت کمی دارند مزیت این چدنها قابلیت چکش خواری ، نرمی و قابلیت تراشکاری مناسب می باشد .

چدن خاکستری :

در این چدنها ، کربن به شکل گرافیت می باشد ، این چدنها در صنعت بیشترین کاربرد را به خود اختصاص می دهند و به آنها چدن ریختگی می گویند که البته برای این نوع چدن عنوان نا مناسبی می باشد سطح مقطع چدن خاکستری به رنگ خاکستری بوده که این رنگ ناشی ازرسوب ( ورقه های ) نازک گرافیتی در آن می باشد .

از نظر خواص مکانیکی ، سختی بالایی دارند و مقاومت فشاری زیاد و نیز قابلیت تراشکاری خوبی از خود نشان می دهند . از خواص دیگر این چدنها قابلیت جذب ارتعاش می باشد . ورقه های گرافیت در این چدنها می توانند به شکلها و فرمهای مختلفی ظاهر شوند . هر یک از انواع گرافیت تمایل به افزایش خواص معینی از این چدنها دارند .

چدن نشکن ـ داکتیل ( چدن با گرافیت کروی ) :

کربن دراین چدنها به صورت گرافیت کروی شکل ظاهر میشود . ترکیب شیمیایی این چدنها شبیه ترکیب شیمیایی چدن خاکستری میباشد ، فقط وجود مقدار عنصر گوگرد در این چدنها بسیار حساسیت دارد .

افزودن مقدار کمی از عنصر منیزیم( Mg ) به چدن مذاب باعث کروی شدن گرافیت و تولید چدن نشکن خواهد شد . بالا بودن مقدار کربن و سیلیسیم باعث افزایش محفوظ ماندن مزایای فرآیند ریخته گری و قابلیت ماشینکاری در این چدنها میشود .

مدول الاستیک چدن نشکن زیاد است و استحکام تسلیم آن در محدوده خوبی قرار دارد ، از طرفی انعطاف پذیری این آلیاژها بسیار خوب است .

وجود گوگرد د ر این چدنها باعث اتلاف منیزیم به شکل سولفورید منیزیم Mgs می شود بنابراین مقدار گوگرد در این آلیاژها نباید از 03/0% بیشتر باشد .

ضخامت مقطع تاثیر بسیار محدودی برخواص آن دارد . ضخامت این چدن بطور کلی اثری بر میزان سختی آن نخواهد داشت .

انواع مختلف چدنهای داکتیل یا نشکن باخواص مکانیکی متفاوت و ریز ساختارهای مختلف وجود دارند . از نظر ترکیب شیمیایی معمولاً تفاوتی بین انواع مختلف این چدن وجود ندارد ، مگر اینکه جهت کاربردهای از پیش تعیین شده وطراحی های از قبل صورت گرفته عمداً اختلاف در ترکیب شیمیایی ایجاد گردد ، این تغییرات ترکیب شیمیایی به منظور بهبود ساختمان میکروسکوپی قطعه صورت می گیرد .

5) چدن با گرافیت فشرده :

در این چدنها گرافیت به شکل ورقه های ضخیم و کرمی شکل خواهد بود که هر یک از این ورقه ها با یک دانه موجود در زمینه فلز ارتباط دارد این چدنها از نظر خواص در بین خواص چدن خاکستری و خواص چدن نشکن قرار دارند . شکل گرافیت فشرده تحت عناوین :

1 ) شبه ورقه ای 2) ورقه متراکم 3) نیمه کروی 4) گرافیت کرمی شکل

قرار دارد .

zn ) :

شمشهای روی با درجه خلوص 7/98 تا 5/99 درصد روی در

استانداردهای مختلف بین المللی تهیه میشوندو همواره حاوی ناخالصیهایی

از قبیل مس ، کادمیوم ، آهن ، سرب و گاهی قلع و آنتیموان می باشند .

در ذوب آلومینیوم معمولاً از شمشهای روی با درجه خلوص 9/99

استفاده می شود تا میزان ناخالصیها ، به خصوص آهن تقلیل یابد . نقطه

ذوب روی 419 درجه سانتیگراد و وزن مخصوص آن 1/7 گرم بر سانتیمتر مکعب است .

منیزیم ( mg ) :

در مواقعی که درصد کمی از منیزیم مورد نیاز باشد ، می توان مستقیماً منیزیم رابه مذاب آلومینیوم اضافه نمود که شمشهای آن با درجه

خلوص 9/99 حاوی ناخالصیهایی از قبیل آهن ، سدیم ، آلومینیوم ، پتاسیم ، مس و نیکل می باشند . نقطه ذوب منیزیم650 درجه سانتیگراد

و وزن مخصوص آن 74/1 و در شمشهای 5/2 تا 15 کیلو گرمی تهیه می شود .

سیلیسیم ( si ) :

این عنصر به دو صورت سیلومین و یا سیلیسیم کریستالیزه به

آلومینیوم اضافه می شود.ترکیبات سیلومینی با 10 تا 13 درصد سیلیسیم

وجود دارد . شمش سیلیسیم کریستالیزه با درجه خلوص 5/99 تا 9/99

درصد سیلیسیم همراه ناخالصیهایی از قبیل آهن ، آلومینیوم دارای نقطه

ذوبی حدود 1400 درجه سانتیگراد و وزن مخصوص آن 4/2 می باشد .

منگنز ، مس ، آهن ، نیکل ، کروم مستقیماً به مذاب آلومینیوم اضافه نمیگردند و در مورد این عناصر معمولاً ازآمیژانها استفاده میکنند .

شمشهای دوباره ذوب ( ثانویه ) و قراضه :

شمشهای ثانویه که از ذوب و تصفیه قراضه هاوآلیاژهای برگشتی

تهیه میشوند معمولاً از کنترل کیفی مطلوب برخوردارند و حاوی مقداری

ناخا لصیهای معمولی در آلومینیوم مانند مس ، آهن و سیلیسیم هستند .

قراضه ها و قطعات برگشتی بایستی به دقت از نظر ترکیب شیمیایی کنترل ودسته بندی شوند . استفاده مستقیم ازقراضه هاو قطعات

کوچک ( براده ، پلیسه و اضافات تراشکاری ) به دلیل افزایش سطح تماس و شدت اکسید اسیون عملاً نامطلوب میباشد و ترجیحاً این قطعات

را تحت نیروی پرسهای هیدرولیکی فشرده و در بلوکه های مختلف به کار می برند . برگشتیها همچنین آغشته به روغن گریس ، رطوبت و ...

می باشند که بایستی قبل از استفاده و ذوب دقیقاً تمیز و از کثافات روغن

بر کنار باشند و معمولاً از دستگاههای دوار و خشک کننده در این مورد

استفاده می کنند .

از آنجا که قراضه ها معمولاً ترکیبات ناشناخته ای دارند ، اغلب

ترجیح داده می شود که آنها را در کارگاه ریخته گری ذوب و پس از

کنترل و آنالیز کیفی مورد استفاده قرار دهند .

آلیاژ سازها ( Hardeners ) :

این عناصر که به نامهای Master alloys و Temper alloys

نیز نامیده می شوند به مقدار زیادی در صنایع ریخته گری آلومینیوم به

کارمیروند ، زیرا آلومینیوم با نقطه ذوب کم اغلب قادربه ذوب و پذیرش

مستقیم عناصر با نقطه ذوب بالا نیست ( مس 1083 ، نیکل 1455 ،

سیلیسیم 1415 ، آهن 1539 و تیتانیم 1660 درجه سانتیگراد ) .



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: بررسی، ریخته، چدن

بررسی تعریف،کاربرد و مزایای ریخته گری

پنج‌شنبه 4 آذر 1395

بررسی تعریف،کاربرد و مزایای ریخته گری


چکیده

در این مقاله مراحل و تاریخچه ریخته گری، روشهای تولید قطعات، مهمترین مزایای روش ریخته گری، محصولات ریخته گری، قالب های ریخته گری، مدل pattern و … را مطرح می کند.

ریخته گری یکی از روشهای شکل دادن قطعات فلزی است که شامل تهیه مذاب از فلز مرد نظر و ریختن آن در محفظه ای بنام قالب است، به گونه ای که پس از انجماد مذاب، شکل، اندازه و خواص مورد نظر تامین شود. بنابراین با توجه به این تعریف یک فرآیند ریخته گری را باید مجموعه ای از عملیات ذوب، تهیه قالب و ریختن مذاب دانست .

در تهیه قطعات صنعتی هر چند ریخته گری بدلیل ویژگی های آن از نقطه نظر تکنولوژی و جنبه‌های اقتصادی به عنوان یک روش مهم و اساسی مطرح است، با این وجود برای بدست آوردن شناختی واقعی و همه جانبه، لازمست تا ویژگیهایی این روش در کنار سایر روشهای موجود در تولید قطعات مورد بررسی و اندیابی قرار گیرد.

بطور کلی روشهای اصلی شکل دادن فلزات را علاوه بر ریخته گری به چهار گروه عملیات مکانیکی، اتصالی، ماشینکاری و متالوژی پودر تقسیم می نمایند.

عملیات مکانیکی با روش مکانیکی شکل دادن ، Mechanical procen

در این عملیات مواد جامد فلزی موسوم به شمش تحت روشهایی نظیر چکش کاری یا تپک کاری، نورد و اکستروژن ( فشار کاری) شکل داده می شود.

در حقیقت در این روش ها یک قطعه فلزی تحت تأثیر ضربه یا نیروی اعمالی تغییر شکل پلاستیک می دهد.

این شکل دادن با توجه به جنس فلز و شرایط کاربردی آن ممکن است به صورت سرد یا گرم انجام شود.

هر گاه کار مکانیکی در درجه حرارتهای پانیمتر از ۳/۱ نقطه ذوب بر حسب درجه کلوین انجام شود به آن کار سرد گویند، در حالیکه انجام کار مکانیکی در درجه حرارتهای بالاتر از حد ذکر شده، کارگر نامیده می شود.

واژه های کلیدی: ریخته گری، قالب، مدل، ماسه


فهرست مطالب


تعریف ریخته گری ۷
مراحل ریخته گری ۷
تعریف ریخته گری ۷
تاریخچه ریخته گری ۸
دوره برنز ( مس و مفرغ) ۸
دوره آهن ۱۰
دوره تاریک صنعتی ۱۱
دوره رنسانس صنعتی ۱۲
دوره انقلاب صنعتی ۱۲
روشهای تولید قطعات ۱۳
اکستروژن ۱۴
محدودیت ها و مزایا ۱۵
روش متالوژی پودر. Powder Metallurgy ۱۸
مهمترین مزایای روش ریخته گری ۲۰
محصولات ریخته گری ۲۲
انواع شمش ۲۵
قالب های دائمی ۳۱
قالب های موقت ۳۳
مشخصات عمومی قالبهای موقت ۳۴
قابلیت شکل پذیری ۳۵
دیر گدازی ۳۵
داشتن استحکام مکانیکی ۳۵
داشتن انتقال حرارت مطلوب ۳۷
قابلیت متلاشی شدن ۳۷
ماسه ۳۸
ماسه طبیعی ۳۹
معدن ماسه ۳۹
ماسه مصنوعی ۴۱
ماسه سیلیسی نامرغوب ۴۳
ماسه های دیرگداز غیر سیلیسی ۴۴
انبساط حرارتی ماسه های قالبگیری مختلف ۴۴
کنترل شکل و اندازه ذرات ماسه ۴۷
چسب ها Binders ۴۸
تقسیم بندی چسبها از لحاظ ترکیب شیمیایی ۴۹
بهبود قابلیت از هم پاشیدگی ۵۳
افزودنیهای مخصوص در مخلوط های قالبگیری ۵۳
درصد اجزای تشکیل دهنده ۵۴
احیاء و آماده سازی ماسه ۵۵
روشهای احیا ماسه ۵۶
آماده سازی ماسه ۵۸
خاکها ۶۹
انواع مدل ۷۲
مدلهای چوبی ۷۳
مدلهای فلزی ۷۴
مدلهای پلاستیکی ۷۵
مدلهای طبیعی ۷۶
مدل یک تکه ۷۷
مدلهای صفحه ای ۷۸
مدل با قطعه آزاد ۷۹
مدل با سیستم راهگاهی ۸۰
مدلهای مخصوص ۸۰
اضافه مجاز انقباضی ۸۱
میزان اضافه مجاز ماشینکاری آلیاژ های صنعتی ۸۴
اضافه مجاز ماشینکاری ۸۵
شیب مجاز ۸۶
اختلاف مجاز ( تلرانس) ۸۷
اشتباه در مجاز ۸۸
ریخته گری در قالبهای ماسه ای تر ۹۰
روشهای قالبگیری با ماسه تر ۹۱
ریخته گری در قالب ماسه ای خشک ۹۳
قالب های خشک شده سطحی ۹۳
قالبهای ماسه ای کاملاً خشک ۹۴
ریخته گری در قالبهای Co2 ۹۵
واکنش سیلیکات سدیم و دی اکسید کربن ۹۸
مخلوط ماسه قالبگیری ۹۹
ریخته گری در قالبهای پوسته ای ۱۰۳
عملیات تهیه قالب و ماهیچه ۱۰۵
روش ریخته گری دقیق Investment casting ۱۰۶
مزایای روش ریخته گری دقیق ۱۰۷
انواع روشهای ریخته گری دقیق ۱۰۸
مواد نسوز در فرآیند پوسته ای دقیق ۱۱۰
ریخته گری در قالبهای دائمی ۱۱۲
تقسیم بندی روشهای ریخته گری در قالبهای دائمی ۱۱۲
ریخته گری در قالبهای ویژه ( روش ثقلی)Grarity Die Cootiney ۱۱۳
روشهای ریخته گری ویژه ۱۱۵
عمر قالب ۱۱۶
درجه حرارت بار ریزی ۱۱۸
ریخته گری تحت فشار pressure Die Casting ۱۱۹
روش ریخته گری تحت فشار با محفظه سرد ۱۲۲
ریخته گری تحت فشار کم ۱۲۴
ریخته گری گریز از مرگز Centrifugal Casting ۱۲۶
روشهای بارریزی ۱۲۸
ریخته گری گریز از مرکز عمومی ۱۲۸
پوشش دادن قالب و ماهیچه ۱۳۰
انواع مواد پوششی در قالب های موقت ۱۳۳
روشهای پوشش دادن قالب و ماهیچه ۱۳۵
مشخصات مواد پوششی ۱۳۶
عمر مواد پوششی ۱۳۷
مواد پوششی برای آلیاژ های مختلف ریختگی ۱۳۷
مواد پوششی در آلیاژ های مختلف مثل Cu, Mg, Al, ZA ۱۳۹
کوره های ذوب ۱۳۹
کوره های تشعشی: Rever bratory Farnace ۱۴۲
کوره های الکتریکی Electric Furnace ۱۴۳
کوره های القایی Inducticn Furnace ۱۴۶
عملیات کیفی ۱۵۳
منابع تولید گاز در مذاب ۱۵۴
اتمی مولکولی ۱۵۵
بعنوان مثال تأثیر عناصر آلیاژی را بر انحلال هیدروژن در آلومینیم ۱۵۶
عوامل موثر در میزان مکهای گازی ۱۵۸
روشهای کمی ۱۶۱
روش استخراج در خلاء ۱۶۱
روشهای گاززدایی ۱۶۳
روشهای مکانیکی ۱۶۳
روش گار زدایی با استفاه از کاهش فشار خارجی ۱۶۴
استفاده از گازهای فعال ۱۶۸


تعریف ریخته گری:

ریخته گری یکی از روشهای ساخت و شکل دادن فلزات است.

در این روش یک فلز یا آلیاژ ابتدائاً ذوب شده و در درون یک محفظه تو خالی بنام قالب که تقریباً به شکل قطع ساخته شده ریخته می شود، بنحوی که پس از پایان انجماد شکل، ابعاد، ترکیب شیمیای و خواص مورد نظر بدست آید.

مراحل ریخته گری:

1) طراحی مکانیکی طرح مدل سازی انتخاب روش مناسب

طراحی ریخته گری

قالبی که برای ساخت ماهیچه استفاده می شود.

2) ساخت قالب و ماهیچه

ریخته گری عملیات تخلیه و تمیز کاری( عملیات حرارتی و ساچمه زنی و…) بازرسی و آزمایش قطعات بسته بندی و ارسال

3) ذوب فلز

تعریف ریخته گری

ریخته گری یکی از روشهای شکل دادن قطعات فلزی است که شامل تهیه مذاب از فلز مرد نظر و ریختن آن در محفظه ای بنام قالب است، به گونه ای که پس از انجماد مذاب، شکل، اندازه و خواص مورد نظر تامین شود. بنابراین با توجه به این تعریف یک فرآیند ریخته گری را باید مجموعه ای از عملیات ذوب، تهیه قالب و ریختن مذاب دانست بطور کلی مراحل ریخته گری یک قطعه قلزی به طور ساده در ذیل نشان داده شده است.

تاریخچه ریخته گری:

براساس تحقیقات باستان شناسان، ریخته گری فلزات، یک تکنولوژی ماقبل تاریخ بوده و قدمتی شش هزار ساله دارد.

اولین اشیای ساخته شده از فلزات بصورت قطعات کوچک چکش کاری شده از مس هستند که قدمت آنها به هزار سال قبل از میلاد مسیح می رسد.

از نقطه نظر تاریخی، ریخته گری را می توان به چند دوره تقسیم نمود که در اینجا بشرح آنها به اختصار می پردازیم.

دوره برنز ( مس و مفرغ)

این دوره در خاور نزدیک و در حدود 3000 سال قبل از میلاد مسیح آغاز شده اولین اشیای برنزی کشف شده بصورت آلیاژی از مس و آرسنیک ( حدود 4 درصد) بوده است.

موضوع مهم در این دوره، پی بردن به تأثیر قلع بر خواص مس است که باعث افزایش استحکام و سختی آن می شود. این موضوع هنوز در پرده ای از ابهام است. زیرا نه سنگ معدن مس حاوی قلع بوده و نه اینکه معدن مس و قلع نزدیک هم قرار دارد که آلیاژ شدن آنها بطور اتفاقی امکان پذیر باشد.

در ارتباط با چگونگی پیدایش ریخته گری، میتوان اینگونه تحلیل کرد که با توجه به اینکه پتک کاری قبل از ریخته گری مورد استفاده بشر قرار گرفته است، ممکن است در هنگام تپک کاری عمل ذوب بطور اتفاقی صورت گرفته باشد که با مشاهده این امر موارد ذیل در ذهن بشر القا شده است:

-مذاب باید در محفظه ای ریخته شود تا شکل پیدا کند.

- برای تهیه مذاب باید کوره های تپک کاری بگونه ای تغییر یابد که همواره تهیه مذاب در آن امکان پذیر باشد.

- برای تهیه مذاب و نگه داری آن باید ظرفی نسوز تهیه کرد ( بوته)

با توجه با اینکه بشر قبلاً به نسوز بودن بعضی از خاکها پی برده و نیز به دلیل آشنایی با حرفه سفالگری، به نحوه شکل دادن خاک نیز دست یافته بود، لذا به نیازهای اول و سوم او پاسخ داده شد. نیاز دوم یعنی ساخت کوره های ذوب نیز احتمالاً با سنگ چین و گل اندود نمودن و قرار دادن محلی برای عبور هوا برآورده شد.

از مسائل مهم در این ارتباط موضوع و مش بود که این امر به تبدیل سیستم دم از حالت فوت کردن به استفاده از کسیه دم و سپس به موتورهای تنظیم هوا و فشار مناسب که امروزه کاربرد فراوانی دارد منتهی شد.

بطور کلی در دوران مفرغ، ساخت قطعاتی نظیر تبر، نیزه، کارد، سپر، ظروف و شیشه و نیز ساخت آلیاژ هایی از عناصری نظیر قلع ( تا 18 درصد) و سرب ( تا 11 درصد) و آرستیک و روی معممل بوده است.

دوره آهن:

براساس کاوش باستان شناسان در چین قطعاتی چون مربوط به 600 سال قبل از میلاد مسیح بدست آمده است اما پیدایش آهن به عنوان یک دوره به دو هزار سال قبل از میلاد مسیح می رسد.

نام آهن در زبان پهلوی به عنوان آلیسن در زبان آلمانی آیزن و در انگلیسی آیرن نامیده می شود و احتمالاً در هنگام ذوب مس به آن پی بردند.

در هر حال در حدود 1200- 1000 سال قبل از میلاد آهن تقریباً ماده اصلی اغلب سلولها و ابزارها را تشکیل می داد.

با توجه به نقطه ذوب بالا ( 1539 بدیهی است که ذوب مستقیم آهن تا قرن نوزدهم میلادی امکانپذیر نبود ولی در اواسط دوره آهن بر اثر افزایش کربن و پائین آمدن نقطه ذوب ( در چدنها) قطعات ریخته گری نیز بوجود آمد.

نکته مهم دیگر کشف عملیات حرارتی بر روی آهن بود که از اهمیت خاصی برخوردار است. در مصر شمشیری و تبری با پوشش خاک نسوز بدست آمده که لبه آن حاوی 9 .0 درصد کربن و قسمتهای میانی آن تقریباص فاقد کربن است.

در این اشیاء سختی در قسمت میانی معادل 70 BHN و در قسمت لبه معادل 440 BHN می باشد البه در این دوره جدیدی در آلیاژ های مس نیز بوجود آمده و آلیاژ های مختلفی از مس و قلع ساخته شد.

از آلیاژهای دیگر ساخته شده در اواخر این دوره آلیاژ برنج ( مس و روی) و نیز بنجهای قلع دار است. پیدایش روشهای جدید ریخته گری و قالبگیری را نیز باید از دیگر تحولات دوره آهن دانست در این دوره شواهدی وجود دارد که از قالبهای سرامیکی نیز استفاده بعمل آمده است.

از عجایب این دوره ساخت مجسمه رودیس است که در سال 290 قبل از میلاد ساخته شد و جزء عجایب هفتگانه محسوب می شود.

این مجسمه 32 متری که از قطعات مختلف برنز ریختگی ساخته شده و وزنی حدود 390 تن داشت، طی زمین لرزه ای در دریای مدینترانه غرق شد.

دوره تاریک صنعتی:

در سده های سوم و چهارم بعد از میلاد تا قرن چهاردهم میلادی یک دوره رکود در صنایع و از جمله ریخته گری بوجود آمد.

البته، با توجه به حاکمیت کلیسا و تزئینات آن نظیر ناقوس و شمعدانی روشهای جدیدی در ریخته گری ابداع شد. ( قالب گری با فرمان)


دوره رنسانس صنعتی:

این دوره از سال 1500 میلادی تا 1700 میلادی بطول انجامید. در این دوره صنعت توپ ریزی بنا نهاده شد. ابتدا لوله هیا توپ از برنز و سپس از چدن ساخته شد.

در این دوره علاوه بر تکامل کوره ها و سیستمهای دمشی، از نظر مواد اولیه باید آغاز استفاده از ماسه و روش قالبگیری در ماسه محسوب کرد.

ظهور چدن و فولاد به عنوان مواد اولیه در ساخت قطعات و لوازم دفاعی و خانگی و همچنین استفاده از آلیاژ های متفاوت مس نظیر برنز و برنج و عناصر دیگر و استفاده از طلا در ساخت زینت آلات و قطعات تزئینی از مظاهر دیگر این دوره است.

در این دوره متالوژی بعنوان یک علم مستقل، پیشرفت کرد و نظریه ساختاری بطوری فلزات و سایر مواد توسط هارلکویکر ( Harsoeker) فرانسوی اعلام شد.

قرن هفدهم قرن دستیابی به ابزاری جدید بنام میکروسکوپ بود که تحولی جدی در علم متالوژی ایجاد کرد.



قابلیت شکل پذیری:

هر چند در ساخت قالب، نحوه شکل دادن به یک مخلوط قالبگیری با توجه به ماهیت این مواد متفاوت است، با این وجود دارا بودن قابلیت شکل پذیری و حفظ نمودن آن، بعنوان مهمترین ویژگی مواد قالب گیری در تمام روشها مطرح می باشد.

در میان مواد قالبگیری مورد استفاده در ساخت قالبهای موقت ماسه قالبگیری بدلیل برخورداری از سهولت شکل پذیری در اثر کوبیدن بعنوان قدیمی ترین روش قالبگیری بخش مهمی از فرآیند ریخته گری را به خود اختصاص داده است.

دیر گدازی:

با توجه به اینکه مذاب فلزات مختلف از درجه حرارت ریختن تا انجماد کامل در داخل محفظه قالب و در تماس مستقیم با مواد قالب قرار دارند لذا دیرگدازی یا نسوز بودن این مواد جهت تولید قطعه ای سالم امری لازم و ضروری است قابل ذکر اینکه این دیر گدازی هم ذرات ماسه و هم مواد چسب را شامل می شود.

داشتن استحکام مکانیکی

یک مخلوط مواد قالبگیری پس از شکل گیری باید از استحکام کافی برخوردار باشد بگونه ای که هنگام جابجایی و انتقال به مجل بارریزی شکل ایجاد شده را حفظ نماید.

همچنین در موقع بارزیزی، در اثر تماس با مذاب داغ مقاومت خوبی را در مقابل سایش و فرسایش از خود نشان داده و در اثر فشار فلز دستیابی ( فشار مذاب) Metalostatic pressure دچجار تغییر شکل و ابعاد نگردد.

معانی گوناگون استحکام در طی مراحل مختلف قالبگیری و ذوب ریزی

· طبق تعریف دیر گدازی عبارتست از توانایی ماسه برای تحمل دمای بالا بدون سوختن یا تجزیه شدن

حداقل تغییرات ابعادی در درجه حرارتهای بالا:

با توجه به اینکه جداره های محفظ قالب در اثر مجاورت با مذاب داغ، بسرعت گرم می شوند از اینرو در صورتی که مواد قالب از ضریب انبساطی مطلوب برخوردار نباشند، سطح قالب در اثر انبساط سریع، دچار بادگردگی، ترک و یا شکست می شوند.

·قابلیت نفوذ گاز

علاوه بر هوای موجود در محفظه قالب،‌ مخلوط مواد قالبگیری نیز اغلب حاوی اجزایی است که در مجاورت مذاب تبخیر شده به صورت گاز بخشی از محفظه قالب را اشغال می کند.

با توجه به این امر، جهت خروج گازهای موجود، وجود منافذ کافی در بدنه قالب لازم و ضروری است.


داشتن انتقال حرارت مطلوب

بطور کلی انجاما فلز مذاب در داخل قالب مستلزم خروج حرارت مذاب از طریق مواد قالب می باشد. با توجه به اینکه سرعت این انتقال حرارت نقش بسیار موثری را در مشخاصت و خواص متالوژیکی و مکانیکی قطعه ریختگی بر عهده دارد، از این رو، در انتخاب مواد قالب گیری به این نکته مهم باید توجه شود.

· توانایی ماده تشکیل دهنده قالب در عبور دادن بخار از طریق دیواره ها.‌نفوذ پذیری یا قابلیت نفوذ گاز نامیده می شود.

قابلیت متلاشی شدن:

با توجه به اینکه قالبها باید پس از ریختن مذاب و جامد شدن آن تخریب گردند، بنابراین مخلوط مواد قالبگیری بایستی به هنگام خروج قطعه از قالب به خوبی از هم پاشیده شود

اقتصادی بودن:

ارزش اقتصادی همواره به عنوان عاملی مهم در کنار یک تولید مهندسی بشمار می رود. به همین جهت قابل دسترس بودن مواد قالب در طبیعت و نیز قابلیت استفاده مجدد از این مواد از مشخصات مهم قالبهای موقت می باشد.

واژه استحکام در مورد قالبهای موقت در طی مراحل مختلف قالبگیری و ذوب ریزی از اهمیت ویژه ای برخوردار بوده و از این دید معانی گوناگونی نیز دارد:

استحکام تر: استحکام قبل از خودگیری نهایی ( یا قبل از خشک کردن قالب)

استحکام خشک: استحکام بعد از خشک کردن قالب یا خودگیری چسب

استحکام گرم: استحکام در هنگام ریخته گری و در حین انجماد قطعه

استحکام باقیمانده : استحکام پس از پایان انجماد قطعه، در حین سرد شدن تا دمای اطاق

معمولاً هر چه استحکام تر بالاتر، استحکام خشک بالاتر، استحکام گرم بالاتر و استحکام باقیمانده کم باشد بهتر است.

استحکام باقیمانده کم

از نظر تخریب قالب

از نظر جلوگیری از بروز ترک در قطعه

ماسه:

همانگونه که اشاره شد یکی از اجزای اصلی در مخلوط ماسه قالبگیری، ذرات دیرگداز موسوم به ماسه است. بطور کلی ماسه ذرات ریزی از مواد معدنی می باشد که قطر آن در محدودة mm ( 2-5%) تغییر می کند.

ذراتی که قطر آنها کمتر از 2% میلیمتر است، طبق تعریف خاک نامیده می شوند. مخلوط ماسه قالبگیری که در ریخته گری مورد استفاده قرار می گیرد براساس ماهیت آن به دو دسته تقسیم بندی می شوند.

1- ماسه طبیعی 2- ماسه مصنوعی

ماسه طبیعی:

این ماسه ها که جزء دیرگداز آن سیلس Sioz می باشد درطبیعت به صورت مخلوطی با خاک رس ( چسب طبیعی) یافت می شود.

میزان خاک رس در ماسه هایی که در ریخته گری مورد استفاده قرار می گیرند بین 20-8 درصد تغییرات است علاوه بر خاک رس ترکیبات دیگری نیز معمولاص در این ماسه ها وجود دارند که عبارتند از: اکسید آلومینیم Al2o3 ، اکسید آهن Fe203، اکسید تیتانیم Tioz، اکسید کلسیم cao اکسید منیزیم Mgo، اکسید پتاسیم k20 و اکسید سدیم Na­2o



مدلهای پلاستیکی:

این مدلها از انواع رزینها ساخته می شوند. زرینهایی که برای ساخت مدلهای پلاستیکی بکار می روند از استحکام فشاری بیشتری ( در مقایسه با مدلهای چوبی)، مقاومت خوب در مقابل مواد شیمیایی و نیز چسبندگی کم به مواد قالبگیری برخوردارند. از ویژگی های مهم این مواد در ساخت مدلها می توان به پایداری ابعادی عالی و نیاز به مهارت کمتر در مقایسه با ساخت مدلهای فلزی اشاره نمود.

برای ساخت مدلهیا پلاستیکی، ابتدا یک قالب گچی مناسب از روی مدل اولیه چوبی تهیه می شود. معمولاً پس از ریختن مواد به داخل قالب، برای خودگیری و سخت شدن آنرا بمدت 2 الی 12 ساعت در درجه حرارت اطاق قرار می دهند.

حداکثر استحکام پس از مدت یک هفته در درجه حرارت اتاق و یا 2 الی 3 ساعت در درجه حرارت 70-50 بدست می آید.

همچنین به منظور کاهش زمان خودگیری و یا کاهش هزینه ها، زرینها را با مواد پر کننده ای مانند مواد معدنی و یا پودر فلزات مخلوط نموده و بکار می برند.

برای ساخت مدلهای پلاستیکی از روش پوسته ای ماهیچه دار نیز استفاده می گردد. در این روش، مغری یا ماهیچه از چوب و یا مواد دیگر تهیه می گردد و سپس با قرار دادن این مغزی در قالب، مواد رزینی مناسب بداخل آن ریخته می شود بدین ترتیب با کاهش یافتن مواد رزینی، هم هزینه آن پایین می آید و هم انقباض زیاد مواد زرینی جلوگیری می گردد

این روش بیشتر برای ساخت مدلهای پلاستیکی با اندازه متوسط و اشکال ساده استفاده می شود.

دسته بندی مدلها براساس شکل ظاهری آنها:

مدلها را می‌توان از نظر میزان تشابه آنها با شکل قطعه ریختگی ( نقشه مکانیکی) به دو گروه اصلی تقسیم نمود.

مدلهای طبیعی:

این نوع مدلها، از نظر شکل ظاهری کاملاً شبیه قطعه ریختگی هستند و می توان قسمت های داخلی و خارجی قطعه را با استفاده از یک مدل، در داخل مواد قالبگیری (ماسه) تهیه نمود.

مدلهای ماهیچه دار:

این نوع مدلها اصولاً شباهت چندانی به قطعه مورد نظر نداشته و دارای زائد هایی بنام تکیه گاه یا ریشه ماهیچه برای نگه داری ماهیچه در محفظه قالب هستند و نمی توان با استفاده از یک مدل قسمتهای داخلی آنرا قالبگیری نمود. این قسمت توسط جعبه ماهیچه ساخته می شود.




خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

بررسی ریخته گری فولاد-ذوب فلزات

پنج‌شنبه 4 آذر 1395

بررسی ریخته گری فولاد-ذوب فلزات



مقدمه

طراحان نیاز فراوانی به مواد مستحکم‌تر و مقاوم‌تر در برابر خوردگی دارند. فولادهای زنگ نزن توسعه داده شده و به کار رفته در دهه‌های دوم و سوم قرن بیستم میلادی، نقطه شروعی برای برآورده شدن خواسته‌های مهندسی در دماهای بالا بودند. بعداً معلوم شد که این مواد تحت این شرایط دارای استحکام محدودی هستند. جامعه متالوژی با توجه به نیازهای روز افزون بوجود آمده، با ساخت جایگزین فولاد زنگ نزن که سوپر آلیاژ نامیده شد به این تقاضا پاسخ داد. البته قبل از سوپر آلیاژها مواد اصلاح شده پایه آهن به وجود آمدند، که بعدها نام سوپر آلیاژ به خود گرفتند.

با شروع و ادامه جنگ جهانی دوم توربین‌های گازی تبدیل به یک محرک قوی برای اختراع و کاربرد آلیاژها شدند. در سال 1920 افزودن آلومینیوم و تیتانیوم به آلیاژهای از نوع نیکروم به عنوان اختراع به ثبت رسید، ولی صنعت سوپر آلیاژها با پذیرش آلیاژ کبالت (ویتالیوم) برای برآورده کردن نیاز به استحکام در دمای بالا در موتورهای هواپیما پدیدار شدند. بعضی آلیاژهای نیکل- کروم (اینکونل و نیمونیک) مانند سیم نسوز کم و بیش وجود داشتند و کار دستیابی به فلز قوی‌تر در دمای بالاتر برای رفع عطش سیری ناپذیر طراحان ادامه یافت و هنوز هم ادامه دارد.

1-1- معرفی و به کار گیری سوپر آلیاژها

سوپر آلیاژها؛ آلیاژهای پایه نیکل، پایه آهن- نیکل و پایه کبالت هستند که عموماً در دماهای بالاتر از oC540 استفاده می‌شوند. سوپر آلیاژهای پایه آهن- نیکل مانند آلیاژ IN-718 از فن‌آوری فولادهای زنگ نزن توسعه یافته و معمولاً به صورت کار شده می‌باشند. سوپر آلیاژهای پایه نیکل و پایه کبالت بسته به نوع کاربرد و ترکیب شیمیایی می‌توانند به صورت ریخته یا کار شده باشند.

در شکل 1-1 رفتار تنش- گسیختگی سه گروه آلیاژی با یکدیگر مقایسه شده‌اند (سوپر آلیاژهای پایه آهن- نیکل، پایه نیکل و پایه کبالت). در جدولهای 1-1 و 1-2 فهرستی از سوپر آلیاژها و ترکیب شیمیایی آنها آورده شده است.

سوپر آلیاژهای دارای ترکیب شیمیایی مناسب را می‌توان با آهنگری و نورد به اشکال گوناگون در آورد. ترکیب‌های شیمیایی پر آلیاژتر معمولاً به صورت ریخته‌گری می‌باشند. ساختارهای سرهم بندی شده را می‌توان با جوشکاری یا لحیم‌کاری بدست آورد، اما ترکیب‌های شیمیایی که دارای مقادیر زیادی از فازهای سخت کننده هستند، به سختی جوشکاری می‌شوند. خواص سوپر آلیاژها را با تنظیم ترکیب شیمیایی و فرآیند (شامل عملیات حرارتی) می‌توان کنترل کرد و استحکام مکانیکی بسیار عالی درمحصول تمام شده بدست آورد.

1-2- مروری کوتاه بر فلزات با استحکام در دمای بالا

استحکام اکثر فلزات در دماهای معمولی به صورت خواص مکانیکی کوتاه مدت مانند استحکام تسلیم یا نهایی اندازه‌گیری و گزارش می‌شود. با افزایش دما به ویژه در دماهای بالاتر از 50 درصد دمای نقطه ذوب (بر حسب دمای مطلق) استحکام باید بر حسب زمان انجام اندازه‌گیری بیان شود. اگر در دماهای بالا باری به فلز اعمال شود که به طور قابل ملاحظه‌ای کمتر از بار منجر به تسلیم در دمای اتاق باشد، دیده خواهد شد که فلز به تدریج با گذشت زمان ازدیاد طول پیدا می‌کند. این ازدیاد طول وابسته به زمان خزش نامیده می‌شود و اگر به اندازه کافی ادامه یابد به شکست (گسیختگی) قطعه منجر خواهد شد. استحکام خزش یا استحکام گسیختگی (در اصطلاح فنی استحکام گسیختگی خزش یا استحکام گسیختگی تنشی نامیده می‌شود) همانند استحکام‌های تسلیم و نهایی در دمای اتاق یکی از مولفه‌های مورد نیاز برای فهم رفتار مکانیکی ماده است. در دماهای بالا استحکام خستگی فلز نیز کاهش پیدا می‌کند. بنابراین برای ارزیابی توانایی فلز با در نظر گرفتن دمای کار و بار اعمال شده لازم است، استحکام‌های تسلیم و نهایی، استحکام خزش، استحکام گسیختگی و استحکام خستگی معلوم باشند. ممکن است به خواص مکانیکی مرتبط دیگری مانند مدول دینامیکی، نرخ رشد ترک و چقرمگی شکست نیز نیاز باشد. خواص فیزیکی ماده مانند ضریب انبساط حرارتی، جرم حجمی و غیره فهرست خواص را تکمیل می‌کنند.

1-3- اصول متالورژی سوپر آلیاژها

سوپر آلیاژهای پایه آهن، نیکل و کبالت معمولاً دارای ساختار بلوری با شکل مکعبی با سطوح مرکزدار (FCC) هستند. آهن و کبالت در دمای محیط دارای ساختار FCC نیستند. هر دو فلز در دماهای بالا یا در حضور عناصر آلیاژی دیگر دگرگونی یافته و شبکه واحد آنها به FCC تبدیل می‌شود. در مقابل، ساختمان بلوری نیکل در همه دماها به شکل FCC است. حد بالایی این عناصر در سوپر آلیاژها توسط دگرگونی فازها و پیدایش فازهای آلوتروپیک تعیین نمی‌شود بلکه توسط دمای ذوب موضعی آلیاژها و انحلال فازهای استحکام یافته تعیین می‌گردد. در ذوب موضعی بخشی از آلیاژ که پس از انجماد ترکیب شیمیایی تعادلی نداشته است در دمایی کمتر از مناطق مجاور خود ذوب می‌شود. همه آلیاژها دارای یک محدوده دمایی ذوب شدن هستند و عمل ذوب شدن در دمای ویژه‌ای صورت نمی‌گیرد، حتی اگر جدایش غیر تعادلی عناصر آلیاژی وجود نداشته باشد. استحکام سوپر آلیاژها نه تنها بوسیله شبکه FCC و ترکیب شیمیایی آن، بلکه با حضور فازهای استحکام دهنده ویژه‌ای مانند رسوب‌ها افزایش می‌یابد. کار انجام شده بر روی سوپر آلیاژ (مانند تغییر شکل سرد) نیز استحکام را افزایش می‌دهد، اما این استحکام به هنگام قرارگیری فلز در دماهای بالا حذف می‌شود.

تمایل به دگرگونی از فاز FCC به فاز پایدارتری در دمای پایین وجود دارد که گاهی در سوپر آلیاژهای کبالت اتفاق می‌افتد. شبکه FCC سوپر آلیاژ قابلیت انحلال وسیعی برای بعضی عناصر آلیاژی دارد و رسوب فازهای استحکام دهنده (در سوپر آلیاژهای پایه آهن- نیکل و پایه نیکل) انعطاف‌پذیری بسیار عالی آلیاژ را به همراه دارد. چگالی آهن خالص gr/cm3 87/7 و چگالی نیکل و کبالت تقریباً gr/cm3 9/8 می‌باشد. چگالی سوپر آلیاژهای پایه آهن- نیکل تقریباً gr/cm3 3/8-9/7 پایه کبالت gr/cm3 4/9-3/8 و پایه نیکل gr/cm3 9/8-8/7 است.

چگالی سوپر آلیاژها به مقدار عناصر آلیاژی افزوده شده بستگی دارد. عناصر آلیاژی Cr, Ti و Al چگالی را کاهش و Re, W و Ta آنرا افزایش می‌دهند. مقاومت به خوردگی سوپر آلیاژها نیز به عناصر آلیاژی افزوده شده به ویژه Cr, Al و محیط بستگی دارد.

دمای ذوب عناصر خالص نیکل، کبالت و آهن به ترتیب 1453 و 1495 و 1537 درجه سانتی‌گراد است. دمای ذوب حداقل (دمای ذوب موضعی) و دامنه ذوب سوپر آلیاژها، تابعی از ترکیب شیمیایی و فرآیند اولیه است. به طور کلی دمای ذوب موضعی سوپر آلیاژهای پایه کبالت نسبت به سوپر آلیاژهای پایه نیکل بیشتر است. سوپر آلیاژهای پایه نیکل ممکن است در دمای oC1204 از خود ذوب موضعی نشان دهند. انواع پیشرفته سوپر آلیاژهای پایه نیکل تک بلور دارای مقادیر محدودی از عناصر کاهش دهنده دمای ذوب هستند و به همین لحاظ، دارای دمای ذوب موضعی برابر یا کمی بیشتر از سوپر آلیاژهای پایه کبالت هستند.

4-2-3- کوره قوس الکتریک

یک طرح عمومی از کوره EAF در شکل 4-1 نشان داده شده است. ظرفیت کوره EAF باید با ظرفیت تانک AOD یکسان باشد. عملیات EAF/AOD سوپرآلیاژها با ظرفیت Kg 9000 می‌تواند انجام گیرد، اما اکثراً ظرفیت تولید این روش در حدود kg36000 انتخاب می‌شود.

دیواره کوره فولادی مدور با سیستم آبگرد و لایه نسوز آجری است. انتخاب آجرهای نسوز به نوع آلیاژ و طراحی کوره بستگی دارد. هزینه نسوز کاری یک کوره متوسط 18 تنی تقریباً 18 هزار دلار است. قسمت پایین کوره ثابت و سقف آن متحرک است. سقف کوره می‌تواند در یک صفحه افقی حرکت کرده و کاملاً از کوره دور شود تا بار به درون آن ریخته شود. سقف کوره دارای سه الکترود گرافیتی است، که در داخل کوره قرار می‌گیرند. در قسمت جلو دیواره کوره مجرای خروج مذاب و در قسمت عقب آن دریچه سرباره‌گیری قرار دارد. کوره قوس تقریباً در داخل یک چاله قرار دارد، به نحوی که مجرای خروج مذاب و دریچه سرباره‌گیری تقریباً در کف کارگاه قرار می‌گیرند. وجود چاله اجازه می‌دهد، که پاتیل حمل مذاب و پاتیل سرباره می‌توانند تا نزدیکی کوره آورده شوند. سطح این پاتیل‌ها پایین‌تر از سطح مجراها قرار می‌گیرند. کوره قابلیت چرخش تا 90 درجه به طرف جلو را دارد، تا فلز مذاب کاملاً به درون پاتیل ریخته شود. زاویه چرخش کوره به طرف عقب به منظور سرباره‌گیری حداکثر 20 درجه است.

به دلیل پایین بودن چگالی مواد اولیه نمی‌توان همه آن را یکباره به کوره بار کرد. ابتدا بخشی از بار به کوره اضافه می‌شود و سقف کوره مجدداً در جای خود قرار می‌گیرد. الکترودها به طرف شارژ حرکت می‌کنند و قوس الکتریکی بین بار و الکترود ایجاد می‌شود. ابتدا قوس کم ولتاژ ایجاد می‌شود. با شروع به ذوب شدن بار الکترودها پایین‌تر می‌روند و ولتاژ جریان افزایش می‌یابد. تا قوسی با طول بیشتر ایجاد گردد و در نتیجه بازدهی ذوب افزایش یابد. عملیات مزبور تا ذوب شدن همه بار ادامه پیدا می‌کند. سقف کوره کنار می‌رود و باقی مانده بار به کوره ریخته می‌شود (بارگذاری مجدد)، پس از بارگذاری مجدد، سقف کوره به محل قبلی خود برگشته و تا زمانی که کل بار ذوب شود، قوس بر قرار می‌شود. پس از آن گرم کردن ذوب با دمش اکسیژن و آرگن می‌تواند انجام شود.

اکسیدهایی که در این مرحله به وجود می‌آیند، ممکن است بسیار خورنده باشند و به لایه نسوز کوره آسیب وارد کنند. ساییدگی نسوزها در همه ذوب‌ها اتفاق می‌افتد، ولی برای جلوگیری از آسیب‌های موضعی شدید نسوز دیواره، معمولاً آهک به بار کوره اضافه می‌کنند. آهک نقش سرباره ساز دارد و سرباره ایجاد شده در کوره به صورت دستی از آن گرفته می‌شود. برای سرباره‌گیری کوره به سمت عقب چرخیده و سرباره جمع‌آوری شده، از دریچه سرباره‌گیری خارج می‌شود. این عمل در صورت نیاز و بسته به نوع بار قابل تکرار است.

پس از آنکه بخش عمده‌ای از سرباره تشکیل شده تخلیه گردید، یک نمونه آنالیز شیمیایی از ذوب تهیه می‌شود. بر مبنای ترکیب شیمیایی بدست آمده از این نمونه ممکن است دمش گاز ادامه یابد یا تعدادی از عناصر آلیاژی برای تنظیم ترکیب شیمیایی قبل از انتقال به واحد AOD به آن افزوده شود. زمان تقریبی مرحله EAF فرآیند EAF/AOD تقریباً 1 تا 3 ساعت است. پس از آماده شدن ذوب آن را به درون پاتیل انتقال مذاب می‌ریزند. پاتیل انتقال (یک ظرف نسوز کاری شده با مجرای خروج مذاب) در مقابل کوره قوس قرار داده می‌شود. کوره می‌چرخد و محتویات خود را به درون پاتیل می‌ریزد. ممکن است پاتیل با MgO نسوزکای شده باشد، تا با سرباره آهک مطابقت داشته باشد. امکان دارد موقع سرباره‌گیری ذرات سرباره بر روی مذاب شناور باقی به ماند. قبل از ریختن مذاب برای جلوگیری از افت دمای مذاب در پاتیل، آن را پیش گرم می‌کنند. پاتیل انتقال مذاب به تانک AOD برده می‌شود و مذاب به درون تانک ریخته می‌شود.

4-2-4- تانک AOD

در شکل 4-6 تانک AOD نشان داده شده است. دیواره تانک فولادی و نسوز کاری شده است. نمای بیرونی تانک شبیه به مخلوط کن‌های بتن با تنه مدور و سر مخروطی است که در محل قرارگیری خود می‌تواند بر روی یک صفحه عمودی چرخش نماید. ظرفیت تانک متناسب با ظرفیت کوره EAF و معمولاً کمتر از 36 تن است. یکی از مشخصات ویژه تانک AOD این است که در کف آن تعدادی لوله برای دمش مخلوط اکسیژن و آرگن وجود دارد. این لوله تعدادی لوله هم مرکز هستند که از لوله مرکزی مخلوط آرگن و اکسیژن و از لوله بیرونی فقط گاز خنثی (معمولاً آرگن) برای خنک کردن انتهای لوله مرکزی دمیده می‌شود.

لایه نسوز تانک AOD شبیه نسوز کوره EAF است و در طی فرایند فرسوده می‌شود. کنترل درجه قلیایی سرباره یک عامل کلیدی برای اطمینان از آسیب ندیدن لایه نسوز از طرف سرباره می‌باشد. اولین مرحله در تانک AOD کربن زدایی مذاب است. اگر درون مذاب اکسیژن خالصی دمیده شود، نتیجه کار نه تنها کربن زدایی مذاب نخواهد شد بلکه کروم بیشتری به اکسید کروم تبدیل خواهد شد. برای اقتصادی کردن واکنش کربن‌زدایی، فشار جزئی اکسیژن دمیده شده به مذاب با اضافه کردن آرگن به آن کاهش داده می‌شود تا از مقدار کرومی که به اکسید کروم تبدیل می‌شود، کاسته شود. وقتی که مقدار کربن مذاب بالا باشد، نسبت آرگن به اکسیژن در مخلوط گازی 3 به 1 در نظر گرفته می‌شود. با کاهش مقدار کربن مقدار آرگن باید افزایش یابد. با نزدیک شدن به مرحله کربن زدایی کامل نسبت آرگن به اکسیژن تقریباً 6 به 1 در نظر گرفته می‌شود.

حرارتی که در اثر واکنش کربن زدایی به وجود می‌آید، مقداری از کروم را اکسید می‌کند. در اثر دمش گاز، سیلسیم نیز اکسید می‌شود ولی حرارت ناشی از اکسیداسیون آن ناچیز است و اثر کمی در گرم کردن مذاب دارد. یادآوری این موضوع اهمیت دارد که تانک AOD فاقد منبع انرژی حرارتی خارجی سات و دمای آن در اثر واکنش‌های گرمازا افزایش پیدا می‌کند. چنانچه لازم باشد دمای مذاب پایین آورده شود، از قراضه جامد استفاده می‌شود. یکنواخت نگه داشتن دمای مذاب از لحاظ اقتصادی اهمیت دارد، زیار تبدیل عناصر آلیاژی با ارزش (به ویژه کروم و نیوبیوم) به سرباره تحت تاثیر دما انجام می‌گیرد. از فوق گداز شدن مذاب باید جلوگیری کرد، زیرا خنک کردن و گرم کردن مجدد آن زمان بر بوده و بازیابی کامل عناصر آلیاژی موجود در سرباره را دشوار می‌سازد.

در طی فرآیند کربن‌زدایی به مذاب آهک اضافه می‌شود. آهک اضافه شده در مرحله دمش گاز کاملاً با مذاب مخلوط شده و درجه بالایی از گوگرد زدایی مذاب به دست می‌آید. CaS حاصل از گوگردزدائی به صورت سرباره در می‌آید. چنانچه پس از نمونه‌گیری از ترکیب شیمیایی، کربن‌زدایی تا سطح مورد نظر انجام شده باشد، مرحله بازیابی عملیات AOD شروع می‌شود.


فهرست مطالب

مقدمه ۹
۱-۱- معرفی و به کار گیری سوپر آلیاژها ۹
۱-۲- مروری کوتاه بر فلزات با استحکام در دمای بالا ۱۰
۱-۳- اصول متالورژی سوپر آلیاژها ۱۱
۱-۴- بعضی از ویژگیها و خواص سوپر آلیاژها ۱۳
۱-۵- کاربردها ۱۵
۲-۱- کلیات ۱۸
۲-۲- شکل سوپر آلیاژها ۱۸
۲-۳- دمای کاری سوپرآلیاژها ۱۹
۲-۴- مقایسه سوپر آلیاژهای ریخته و کار شده ۲۰
۲-۴-۱- سوپر آلیاژهای کار شده ۲۰
۲-۴-۲- سوپر آلیاژهای ریخته ۲۱
۲-۵- خواص سوپرآلیاژها ۲۲
۲-۵-۱- کلیات ۲۲
۲-۵-۲- سوپر آلیاژهای پیشرفته ۲۳
۲-۵-۳- خواص مکانیکی و کاربرد سوپرآلیاژها ۲۴
۲-۶- انتخاب سوپرآلیاژها ۲۶
۲-۶-۱- کاربردهای آلیاژهای کار شده در دمای متوسط ۲۶
۲-۶-۲- کاربردهای آلیاژهای ریخته در دمای بالا ۲۷
۳-۱- گروه‌ها، ساختارهای بلوری و فازها ۳۱
۳-۱-۱- گروه‌های سوپرآلیاژها ۳۱
۳-۱-۲- ساختار بلوری ۳۱
۳-۱-۳- فاز در سوپرآلیاژها ۳۲
۳-۲- مقدمه‌ای بر گروه‌های آلیاژی ۳۳
۳-۲-۱- سوپر آلیاژهای پایه آهن- نیکل ۳۳
۳-۲-۲- سوپرآلیاژهای پایه نیکل ۳۴
۳-۲-۳- سوپرآلیاژهای پایه کبالت ۳۵
۳-۳- عناصر آلیاژی و اثرات آنها بر ریزساختار سوپرآلیاژها ۳۶
۳-۳-۲- عناصر اصلی در سوپرآلیاژها ۳۶
۳-۳-۳- عناصر جزئی مفید در سوپرآلیاژها ۳۷
۳-۳-۴- عناصر تشکیل دهنده فازهای ترد ۳۷
۳-۳-۵- عناصر ناخواسته و مضر در سوپرآلیاژها ۳۸
۳-۳-۶- عناصر ایجاد کننده مقاومت خوردگی و اکسیداسیون ۳۸
۳-۴- استحکام دهی سوپرآلیاژها ۳۹
۳-۴-۱- رسوب‌ها و استحکام ۳۹
۳-۴-۲- فاز ۴۰
۳-۴-۳- فاز ۴۱
۳-۴-۴- کاربیدها ۴۱
۳-۴-۵- کاربیدهای M7C3 44
3-4-6- بوریدها و عناصر جزئی مفید دیگر (به جز کربن) ۴۴
۳-۵- تاثیر فرآیند بر بهبود ریز ساختار ۴۵
ذوب و تبدیل ۴۶
۴-۱- فرآیند EAF/AOD 47
4-1-1- تشریح فرآیند EAF/AOD 47
4-2- عملیات کوره قوس الکتریکی/ کربن زدایی با اکسیژن و آرگن (EAF/AOD) 50
4-2-1- ترکیب شیمیایی آلیاژ و آماده کردن شارژ ۵۰
۴-۲-۲- بارگذاری EAF 52
4-2-3- کوره قوس الکتریک ۵۲
۴-۲-۴- تانک AOD 55
4-2-5- پاتیل ریخته‌گری ۵۷
۴-۳- مروری بر ذوب القایی در خلاء (VIM) 58
4-3-2- تشریح فرآیند VIM 59
4-4- عملیات ذوب القایی در خلاء ۶۱
۴-۴-۱- عملیات ذوب القایی در خلاء ۶۱
۴-۴-۲- کوره القائی تحت خلاء ۶۳
۴-۴-۳- سیستم‌های ریخته‌گری ۶۵
۴-۴-۴- عملیات ذوب القایی در خلاء ۶۷
۴-۵- مروری بر ذوب مجدد ۷۱
۴-۵-۲- تشریح فرآیند ذوب مجدد در خلاؤء با قوس الکتریکی (VAR) 72
4-5-3- تشریح فرآیند مجدد با سرباره الکتریکی (ESR) 73
4-6- عملیات ذوب مجدد در خلاء با قوس الکتریکی ۷۴
۴-۶-۱- کوره VAR 74
4-6-2- عملیات ذوب مجدد در خلاء با قوس الکتریکی ۷۶
۴-۶-۳- کنترل ذوب مجدد در خلاء با قوس الکتریکی ۷۶
۴-۷- عملیات ذوب مجدد با سربار الکتریکی (ESR) 79
4-7-1- کوره ESR 79
4-7-2- عملیات کوره ذوب مجدد با سرباره الکتریکی ۸۰
۴-۷-۳- کنترل ذوب مجدد با سرباره الکتریکی ۸۱
۴- انتخاب سرباره ۸۳
۴-۸- محصولات ذوب سه مرحله‌ای ۸۴
۴-۸-۲- ‏فرآیند ذوب سه مرحله‌ای شمش ۸۵
۴-۹- تبدیل شمش و محصولات نورد ۸۶
۴-۹-۲- همگن‌سازی توزیع عنصر محلول در شمش‌ها ۸۸
۴-۹-۳- آهنگری محصول نیمه تمام ۸۹
۴-۹-۴- آهنگری محصول نیمه تمام آلیاژ IN-718 91
4-9-5- اکستروژن ۹۲
۴-۹-۶- نورد ۹۳
۴-۹-۷- دسترسی به محصولات نورد ۹۴



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

کارآموزی در کارگاه ریخته گری نقش جهان

سه‌شنبه 2 آذر 1395

کارآموزی در کارگاه ریخته گری نقش جهان


بسمه تعالی


مذاب چدن : بر روی این مذاب بعد از خارج کردن از بوته پودر سیلاکس که قرمز رنگ و دانه درشت تر از کاوارل می باشد می ریزند تا شیره و تفاله و سرباره را جذوب خود بکند و باعث می شوند که این مواد غیره ضروری بر روی مذاب جمع شده و به راحتی جمع آوری شوند در ضمن پودر بوراکس که سفید رنگ و نرم می باشد و همچنین حالت دانه ریزتری دارد برای مذاب آلیاژهای مس، برنج، برنز و غیره استفاده می شود.

قطعه نورد در 600 درجه سانتیگراد، دارای ساختار کاربیدی که کاربیدها سخت می باشند که با زمینه مارتنریت یا پرلیت.

کاربیده ها اگر دارای ترک شوند و این ترکها رشد بکنند انفجار شبکه را در پی خواهد داشت.

انحلال کاربید دردمای بالا و همچنین در زمان بالا صورت می گیرند. آستینت باقیمانده مشکل ساز است به همین خاطر تمپر می کنیم که آستینت را از بین برده و ما در این قسمت نیاز به سختی داریم.


کوره ها و وسایل تهیه مذاب :

در کارگاه ریخته گری دو کوره وجود دارد : کوره زمینی یا بوته ای و کوره شعله ای یا دوار.

کوره زمینی بیشتر برای ذوب آلیاژهای آهنی مثل چدن و آلیاژهای غیر آهنی مثل آلومینیوم، مس، برنج، و …… بکار می رود. بدین ترتیب که بوته را مثلاً از آلومینیوم پر کرده و داخل کوره قرار می دهیم و پس از ذوب شدن بوته را به وسیله طوقچه یا انبر بیرون می آوریم و داخل کمچه قرار داده و دو نفر این طرف و آن طرف کمچه را گرفته و آماده مذاب ریزی داخل قالب می شوند. سوخت این کوره از گازوئیل است که به وسیله هوای که از دم و یا بازدم برقی به همراه سخت داخل کوره می شود، گازوئیل را پودر کرده و باعث می شود که راندمان حرارتی کوره بالا رود.

کوره شعله ای یا دوار تشکیل شده است از بدنه، شاسی، موتور جهت گرداندن کوره و شعله گیر. این کوره بیشتر برای ذوب چدن بکار می رود. بدین ترتیب که چدنها داخل محفظه کوره دوار قرار داده و طی تماس شعله با چدنها، آنها را ذوب می کند. درهمین حین کوره به وسیله موتور و چدنهایی که در زیر کوره قرار دارد می چرخد و شعله گیر هم جلوی اتلاف حرارت شعله را گرفته و هوای گرم را به طرف بادزن برقی هدایت می کند تا به وسیله هوای گرم راندمان حرارتی کوره بالا رود. بوسیله چرخاندن کوره و قرار دادن بوته در زیر کوره مذاب چدن را از داخل کوره به قالبها انتقال می دهیم.

چدن (CAST IRON)

خانواده‌ای از آلیاژهای آهنی هستند که درصد کربن موجود در انها بیش از 2% و سیلیم (SI) بیش از 1 درصد میباشد.درواقع چدن یک نوع آلیاژ سه تایی FE – C – SI می باشد.

چه خواصی موجب برتری چدن نسبت به فلزات دیگر شده است ؟

1- ارزانی قیمت

2- خواص مکانیکی ویژه (از جمله قابلیت جذب ارتفاعش، مقاومت در برابر سایش و فشار، عدم حساسیت در برابر شیارهای سطحی)

3- سادگی تهیه قطعات چدنی از طریق ریخته گری به دلیل :

الف) پائین بودن نقطه ذوب و سیاسیت بالا

ب) پائین بودن ضریب انقباض در هنگام استحاله مذاب جامد

عوامل موثر در تعیین خواص مکانیکی چدنها نسبت به گرافیت :

گرافیت نوعی کربن کریستالیز شده است که به علت تغییر فرم پلاستیکی راحتی که در گرافیت وجود دارد سختی بسیار کمی دارد

1) مقدار گرافیت : هر چه درصد ذرات گرافیت در زمینه زیادتر باشد استحکام چدن کمتر می باشد

2) شکل گرافیت : اشکال مختلفی از ذرات گرافیت در ریز ساختار دیده می شود که مهمترین انها عبارتند از :

الف) گرافیت لایه ای در چدن خاکستری

ب) گرافیت تمبر شده در چدن ماسیبل

ج) گرافیت کروی در چدنهای داکتیل

د) گرافیت کرمی شکل در چدن با گرافیت فشرده

3) نحوه توزیع ذرات گرافیت : تاثیر زیادی بر روی خواص مکانیکی دارد مانند ساختار گل رزی

4) اندازه ذرات گرافیت

کربن به دو صورت در ساختار دیده می شود : به صورت آزاد گافیت و به صورت ترکیبی FE3C (سمانتیت)

برخی از مشخصه های سمانتیت :

1) وزن مخصوص نزدیک به آهن

2) فازی بسیار سخت و شکننده است

3) دارای هیچگونه تغییر آلوتروپی نیست و نقطه ذوب حدود C 1250 دارد.

کربن معادل : توسط این فاکتور اثر تمام فازهای موجود در چدن نسبت به اثر کربن و عناصر مشابه سنجیده می شود. مجموعه این اثرات تشکیل عدد خاصی به نام کربن معادل (CE) را می دهد.

(CU %07/.) - (AL %2/.) – (S %4/.) – (P% + SI% 3/1 + C%) = CE کربن معادل (MN %03/.) + (CR %06/.) – (NI % 05/.) –

%10< cr="" و="" ni="" و="">< cu="" و="">< al="" و="" %4/="">< و="" %5/2="">< mn="">

(%SI + P) 3/1 + C %= CE کربن معادل

ذوب چدنها : ذوب چدنها راحت و در کوره های معمولی مانند کوره های بوته ای (گرافیتی) زمینی چدنها را ذوب می کنند در حالی که فولاد را در کوره های قوس، القایی و زیمنس ذوب می کنند. کوره ای که مخصوص ذوب چدن است و صرفه اقتصادی دارد، کوپل می باشد که تا حدود 1 تن در ساعت می تواند ذوب بدهد. کوره هایی که برای ذوب چدن استفاده می شوند عبارتند از :

کوره کوپل، القایی، الکتریکی، کوره گرم کن شعله ای و کوره زمینی

عوامل موثر در انتخاب کوره :

1- میزان سرمایه گذاری

2- اندازه و نوع قطعه ریختگی

3- سرعت ذوب

4- ظرفیت کوره

5- میزان نیاز به کنترل مذاب

کنترل مذاب چدن (آزمایش کارگاهی) : تعیین میزان تمایل چدن به گرافیت زایی توسط آزمایش چیل (CHILL) مشخص می شود (گرافیت زایی چدن سفید) این کار توسط ریختن مذاب داخل قالبهایی به شکل مکعب مستطیل یا حفره ای شکل صورت می گیرد.

در این آزمایش هر چه عمق سردشدن در نمونه بیشتر باشد تمایل چدن به گرافیت زایی کمتر است.

عمده ترین عواملی که روی سیالیت مذاب چدن اثر می گذارد :

1- درجه حرارت مذاب

2- ترکیب شیمیایی : هر چه ترکیب به ترکیب یوتکتیک نزدیکتر شود سیالیت مذاب بالالتر می رود.

3- ارائه این دو فاکتور بر روی سیالیت چدن خاکستری به صورت زیر ارائه شده است :

155 – T 05/ + CE * 9/14 = درجه سیالیت

آزمایشهای آزمایشگاهی چدن :

1- تعیین ترکیب شیمیایی چدن با استفاده از ابزاری نظیر کوانتومتر

2- تعیین خواص مکانیکی چدن : کلیه خواص کششی، فشاری، ضربه و سختی و …

3- کنترل ریز ساختار (با متالوگرافی)

4- تعیین میزان تخلخل چدن با کمک اشعه ایکس (رادیوگرافی)

چدن خاکستری

1) کوره های ذوب : به علت پائین بودن نقطه ذوب عموماً می توان در هر کوره ای عملیات ذوب را انجام داد.

2) روشهای ریخته گری : عموماً گریز از مرکز، افت فشار وثقلی

3) روشهای قالبگیری : به استثنای روش قالبگیری با گچ سایر روشها به کار گرفته
می شود.

خواص مهندسی چدن خاکستری

اصولاً ترکیب شیمیایی، سرعت سرد شدن و نوع عملیات حرارتی روی ریز ساختار و نتیجتاً روی خواص مکانیکی اثر می گذارد

1- اثر ترکیب شیمیایی : مهمترین اثر خواص مکانیکی مربوط به کربن و سیلسیم موجود در آن می باشد.

با استفاده از نمودار روبه‌رو با افزوده شدن درصد کربن معادل، خواص مکانیکی کاهش می یابد.


فهرست مطالب

عنوان صفحه

مذاب چدن 1

کوره ها و وسایل تهیه مذاب 1

چدن 3

آزمایشهای آزمایشگاهی چدن 7

چدن خاکستری 8

چدن نشکن 10

فرم دادن بوسیله پرسی 13

ابزارهای فرمکاری 16

قسمت قالبگیری 17

تغذیه گیری 21

نحوه درآوردن قالب 26

مرحله مونتاژ و یا ماهیچه گذاری 27

نحوه قالبگیری چرخ 29

قسمت تخلیه درجه ها 42

قسمت عملیات حرارتی و تمیزکاری 44

قسمت کنترل کیفی 49




خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

ریخته گری مداوم ( مداوم ریزی )

جمعه 28 آبان 1395

ریخته گری مداوم ( مداوم ریزی )

1-8 : مقدمه :

ریخته گری شمش ها به طریقه تکباری از نظر مشخصات متالوژیکی ، تکنولوژیکی و تولیدی دارای نارسایی ها و نقایص عمده ای است که تبدیل شرایط انجماد و افزایش کمیت و کیفیت تولیدی را ایجاب می نماید و در هر یک از شاخه های متالورژی آهنی و غیر آهنی ، مهمترین مباحث تولیدی بر انتخاب بر آیند مطلوب از سه عامل متالورژی ، تکنولوژی و اقتصاد قرار دارد . در شمش ریزی که به تولید محصول نیمه تمام می انجامد ، بسیاری از عیوب و نارسایی های تولیدی ، هنگامی مشخص می گردند که کار مکانیکی نظیر نورد ، پتکاری ، پرس ، فشار کاری و ... بر روی قطعه انجام گرفته است و کار و هزینه بیشتری صرف شده است و همین مطلب دقت و کنترل در تولید شمش ها را لازم می دارد .

خواص شکل پذیری مکانیکی آلیاژها ، مستقیماً " به نرمش Ductility و تا و Strength آنها بستگی دارد و این دو مشخصه نیز شدیداً " تحت تاثیر ساختار شمش ، همگنی و یا ناهمگنی دانه های بلوری ، مک حفره و جدایش قرار دارد . مهمترین مشخصات مورد لزوم در ساختار شمش ها عبارتند از :

الف ) ریز بودن دانه ها

ب ) گرایش دانه ها از ستونی به محوری

پ ) همگن و هم اندازه بودن دانه ها

ت ) نازک بودن مرز دانه ها

ث ) همگنی شیمیایی و فقدان جدایش های مستقیم یا معکوس

ج ) کاهش مک انقباضی و نایچه

چ ) همگنی در اندازه ، شکل و پخش مک های انقباضی

ح ) کاهش مک های انقباضی پراکنده

خ ) کاهش و حذف مک های گازی و ریز مک ها

د ) حذف و کاهش ترک های درونی و سطحی

ذ ) کاهش مقدار آخال و سرباره

از مباحث قبل و آنچه که در فصول مربوط به انجماد گفته شده است ، چنین استنتاج می گردد که عیوب و نارسایی های متالولوژی ، ناشی از فقدان شرایط لازم برای سرد کردن و قدرت سرد کنندگی قالب ها می باشد که نوع آلیاژ و شکل و اندازه شمش نیز در حصول به نتیجه دلخواه اثرات قابل توجهی دارند. از نظر تکنولوژیکی و تولیدی نیز ، کندی و آهستگی ، نیاز به مکان و فضای وسیع ، دور انداز و برگشتی ها ی شمش ( در هر دو قسمت فوقانی و تحتانی ) افزایش تعداد کارگر و محدودیت در اندازه شمش ، عوامل دیگری محسوب می شوند که روشهای تکباری را محدود و برای صنعت پویای امروز نا کافی میسازند.

تحلیل عملی معایب و نیاز روز افزون به افزایش تولید ، به اصلاحاتی در روش های تکباری منجر گردید که نیازمندی های علمیو تولیدی را کفایت نمی نمود. روش ریخته گری مداوم و یا شمش ریزی مداوم بر اساس سرد کردن مستقیم تختال یا شمشال ، با طول های تقریباً محدود و زمان بار ریزی نامحدود ، فرآیند جدیدی است که قسمت اعظم نیازمندیهای فوق را برآورده ساخته و گسترش تکنولوژیکی و متالوژیکی آن هنوز ادامه دارد .

هر گاه روش یا فرایند جدیدی وارد صنعت گردد ، سال های متمادی ، بدون آنکه طرح اصلی و مکانیسم عمده آن تغییرات فاحشی پیدا کند ، مشمول تحقیقات وسیعی از دیدگاههای مختلف می گردد که به تحصیل محصولاتب بهتر و برتر می انجامد ، مانند تغییر مواد قالب ، سیستم خنک کنندگی ، مبرد و آبگرد که در شمش ریزی تکباری انجام گرفته است . هنگامی میرسد که طرحی کاملاً جدید و فکری نو و سیستمی کاملاً‌ متفاوت ابداع و اظهار می شود . در این حال ، چنانچه روش جدید ، بتواند نظر محققان و تولید کنندگان دیگر را جلب کند و یا پیش بینی تحول های جدیدی بر آن مترتب شود ، مسید تحقیقات و بررسیهای به طرف سیستم جدید گرایش یافته و کلیات آنها در روش جدیدی متمرکز می گردند . بدیهی است گاه ممکن است یک نظریه و یا طرح جدید ، برای سالیان دراز مسکوت بماند ولی چنانچه آن طرح بر موازین علمی استوار باشد و شرایط لازم عملی را در نیازهای صنعتی پیدا کند از لابلای تاریخ علمی بیرون کشیده می شود .

نوع فایل:word

سایز : 20.4 KB

تعداد صفحه :23



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: ریخته، مداوم، ریزی، )

پروژه کارآموزی - کارگاه ریخته گری

یکشنبه 16 آبان 1395
لینک دانلود   "  MIMI file "   پایین همین صفحه   تعداد صفحات :  " 35 " فرمت فایل : "   word " فهرست مطالب : مقدمه آشنایی با کارگاه ریخته گری ماهیچه سازی عناصر اصلی ذوب بازرسی و کنترل کمی و کیفی انواع قالب های ریخته گری عیوب ریخته گری خواص عمومی ماسه های قالب گیری مواد قالب و ماهیچه ها برای قالب های دائمی چدن خاکستری عملیات حرارتی چدن ها   بخشی از  فایل  :   موضوع : گزارش کار – کار آموزی ..........................................................................                    تابستان : 87-86   من دورة کار آموزی خود را که به مدت 288 ساعت بود و به مدت دو ماه طول کشید را در کارگاه ریخته گری جهاد دانشگاهی مشهد واقع د ...



برای دیدن ادامه مطلب اینجا را کلیک کنید

دانلود تحقیق درباره ریخته گری

پنج‌شنبه 15 مهر 1395
یکی از روشهای تولید قطعات روش ریخته گری می باشد و اجسام زیادی را در صنعت می توان با این روش تهیه کرد. انواع قطعات اتومبیل، موتور هواپیما، ماشین آلات سنگین، بیلهای مکانیکی و... و خلاصه اینکه کمتر می توان ماشین صنعتی پیدا کرد که در آن قطعات ریخته گری استفاده نشده باشد و این به علت آن است که فوائد و مزایای بسیاری نسبت به سایر روشها دارد که در زیر به آن اشاره می شود. الف – روش ریخته گری ساده ترین راه در صنعت برای تبدیل سریع یک طرح به جسم مورد نیاز میباشد. ب – تهیه قطعات با وزن کمتر از یک کیلوگرم تا چند صد تن امکان پذیر می باشد. ج – با استفاده از روش ریخته گری قطعات با پیچیدگی خاصی که در روشهای دیگر، امکان تولید آنها وجود ندارد، قابل تولید می باشد. د – با این روش قطعات با آلیاژها و آنالیزهای خاصی قابل تولید می باشند. ه- امکان ایجاد خواص مکانیکی و متالورژیکی از طریق ...



برای دیدن ادامه مطلب اینجا را کلیک کنید

پروژه کارآموزی - کارگاه ریخته گری

چهارشنبه 7 مهر 1395
لینک دانلود   "  MIMI file "   پایین همین صفحه   تعداد صفحات :  " 35 " فرمت فایل : "   word " فهرست مطالب : مقدمه آشنایی با کارگاه ریخته گری ماهیچه سازی عناصر اصلی ذوب بازرسی و کنترل کمی و کیفی انواع قالب های ریخته گری عیوب ریخته گری خواص عمومی ماسه های قالب گیری مواد قالب و ماهیچه ها برای قالب های دائمی چدن خاکستری عملیات حرارتی چدن ها   بخشی از  فایل  :   موضوع : گزارش کار – کار آموزی ..........................................................................                    تابستان : 87-86   من دورة کار آموزی خود را که به مدت 288 ساعت بود و به مدت دو ماه طول کشید را در کارگاه ریخته گری جهاد دانشگاهی مشهد واقع د ...



برای دیدن ادامه مطلب اینجا را کلیک کنید

دانلود تحقیق بررسی انواع عیوب ریخته گری

یکشنبه 4 مهر 1395
  دانلود تحقیق بررسی انواع عیوب ریخته گری  20 صفحه در قالب word       چکیده : تحقیق به عمل آمده شامل تعدادی از عیوب قطعات آلومینیومی تحت فشار می باشد و سعی بر آن شده که عیبهای مهم آن از جمله   عیب سرد جوشی -  عیب نیامد – عیب مک های گازی - عیب مک های انقباضی– عیب آبلگی – عیب مک های سوزنی ( ریزمک ) – عیب ترک خوردگی – عیب سخت ریزه و عیب قطره های سرد مورد بررسی و چاره جوئی قرار گیرد . قابل ذکر است نیاز امروزی صنعت به کیفیت های بالاتر ایجاب می کند که تولید کنندگان به سطوح جدیدی از کیفیت و بازده تولید دست یابند و اگر چه این نوع  ریخته گری محدودیتهایی دارد اما ثابت شده که با بکارگیری اصول مهندسی کارآیی آن به خوبی بسیاری از فرآیندهای دیگر خواهد بود و باعث بالابردن سطح کیفیت موجود خواهد شد . یک عیب در دایگست همیشه قراردادی ...



برای دیدن ادامه مطلب اینجا را کلیک کنید

تحقیق درمورد ریخته گری چدن

یکشنبه 4 مهر 1395
لینک پرداخت و دانلود *پایین مطلب* فرمت فایل:Word (قابل ویرایش و آماده پرینت) تعداد صفحه:12 فهرست مطالب: صنعت ریخته گری چدن چیست؟ چدن ها در ریخته گری آلیاژهای چدن انواع ساختارهای زمینه چدن انواع چدن های ریخته گری برخی از کاربردهای چدن‌ها آلیاژهای ریخته گری چدن ها توضیحاتی پیرامون صنعت ریخته گری چودن ریخته‌گری جزء یکی از روشهای تولید می‌باشد. اصولاً تکنولوژی تولید ریخته‌گری به دو قسمت تقسیم می‌شود: 1- استفاده از قالبهای موقت: دراین روش قطعات تولید شده از ریختن مذاب قالب(که براساس کوبیدن مواد نسوز در اطراف مدل معین به وجود آمده است) به دست می‌آید. قالبهای موقت خود به سه دسته ماسه‌ای ـ پوسته‌ای و سرامیکی تقسیم می‌شود. در روش ماسه‌ای مدل که ممکن است از جنس چوب و یا فلز باشد در محفظه قالب قرار می‌گیرد. درون قالب را از ماسه پر ...



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: تحقیق، درمورد، ریخته، چدن
( تعداد کل: 60 )
   1       2       3       4    >>