X
تبلیغات
رایتل

پاورپوینت بررسی دستگاه تولید مثل در گیاهان عالی - پیدازادان - نهاندانگان

شنبه 13 آذر 1395

پاورپوینت بررسی دستگاه تولید مثل در گیاهان عالی - پیدازادان - نهاندانگان



دستگاه تولید مثل در گیاهان عالی - پیدازادان - نهاندانگان


- نظریه متامورفوز از انگلر درمورد منشا گل:


هر گل شاخه کوتاهی با نمو محدود است که برگهای آن تغییر شکل یافته و به اجزاء گل تبدیل شده اند.

نظریه دوم :همه اجزاء گل به جزء کاسبرگها نمی تواند منشا برگی داشته باشد.


ساختمان گل


- گل مانند سایر جوانه ها از کنار برگ کوچکی (برگه) خارج می شود.
و بر روی یک پایه(پایک) قرار می گیرد.



گل شامل دو بخش :

1- پوشش گل



2- دستگاه تولید مثل

•اقسام برگ
کویول: محور کوتاهی که تمام قسمتهای برگ روی آن قرار گرفته اند.
نهنج: انتهای محور گل که قطعات گل روی آن قرار دارند.



کاسه گل


مجموع قطعات سبز رنگ بنام کاسبرگ یا سپال که بخش های دیگر گل را
می پوشاند.

پتالوئید: کاسبرگها به رنگهای متنوع که به گلبرگ تشبیه شده،لاله عباسی

دوام کاسبرگها متفاوت است.- در شقایق و خشخاش با شکفته شدن گل می افتند.
- در میخک و بنفشه پس از رسیدن میوه روی گل می مانند.
- در گون و عروسک پشت پرده در نمو میوه کاسبرگ نیز حجیم شده میوه را
در بر می گیرد و پس از رسیدن میوه رنگین و زینتی می شود.



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

بررسی تولید و مراحل فنولوژی گیاه دارویی سرخارگل به عنوان مادّه اوّلیه تولید داروهای تقویت کننده سیستم دفاعی

چهارشنبه 10 آذر 1395

بررسی تولید و مراحل فنولوژی گیاه دارویی سرخارگل به عنوان مادّه اوّلیه تولید داروهای تقویت کننده سیستم دفاعی

کلمات کلیدی : سرخارگل، گل ستاره ای، عملکرد پیکر رویشی، عصاره خشک. چکیده مقاله

سرخارگل (Echinacea purpurea ) گیاهی است علفی، چندساله متعلّق به تیره گل ستاره ایها (Asteraceae ) . سرخارگل یکی از مهمترین گیاهان دارویی در صنایع داروسازی بیشتر کشورهای توسعه یافته است. موّاد مؤثّره این گیاه خاصیّت ضد ویروسی داشته و تقویت کننده سیستم دفاعی بدن (Immunostimulant ) می باشد. منشاء این گیاه شمال آمریکا گزارش شده است و در شمال رودخانه میسوری به صورت انبوه می روید. این گیاه در فلور ایران وجود ندارد و بذر آن برای اوّلین بار در سال 1372 وارد کشور شده است. هدف از انجام این تحقیق چگونگی کشت و تولید سرخارگل بود که با استفاده از نتایج آن بتوان آنرا در مقیاس مناسب کشت و مادّه اوّلیه تولید داروهای حاصل از این گیاه را تأمین کرد. طبق نتایج این تحقیق بذور را باید نیمه اوّل اسفند ماه در خزانه هوای آزاد و به عمق 2 تا 4 سانتی متر کشت کرد. بذور پس از طی دوره سرما نیمه اوّل فروردین ماه سبز می شوند. اواخر خرداد زمان مناسبی برای انتقال نشاء ها به زمین دایمی است. گیاهان اواسط تابستان به گل می روند. ارتفاع گیاهان از سال دوّم رویش به تدریج افزایش می یابد و در سال چهارم رویش به حداکثر (99 سانتیمتر) می رسد. در سال چهارم حداکثر عملکرد پیکر رویشی (4 تن در هکتار) بدست آمد. حداکثر مقدار عصاره خشک (35 در صد) از پیکر رویشی گیاهان دو ساله بدست آمد، زیرا با افزایش سن گیاه مقدار بافتهای چوبی گیاه افزایش می یابد. با توجه به اینکه کشور ما از نظر اقلیمی از تنوع خاصّی برخوردار است انجام این نوع تحقیقات در مناطق مختلف کشور در مورد گیاهانی که بومی کشور نیستند از نظر اقتصادی بسیار ارزشمند و ضروری است.

اثر ضددردی عصاره الکلی بذر گیاه تاتوره در موش‌های صحرایی نر دیابتی ناشی از تزریق استرپتوزوتوسین

منبع : sid.ir گیاهان دارویی

کلمات کلیدی : کلید واژه: دیابت، استرپتوزوسین، درد، تاتوره، موش صحرایی چکیده مقاله

مقدمه: دیابت و به خصوص عوارض ناشی از آن که به عنوان یکی از شایع‌ترین بیماری‌ها که در سنین متفاوت و با علل مختلف بروز می‌کند، افراد درگیر را با مشکلات فراوانی روبرو کرده است. از جمله مهمترین این عوارض افزایش حساسیت به عوامل دردزا (هیپرآلژزی) و در بعضی موارد افزایش آستانه درد (آلودینیای ناشی از نوروپاتی) را می‌توان نام برد. براین اساس در تحقیق حاضر در ابتدا آستانه درد حاد و مزمن موش‌های دیابتی به کمک دو نوع آزمون صفحه داغ و فرمالین سنجش و سپس اثر ضددردی عصاره الکلی بذر گیاه تاتوره Datura stramonium L. بر آن بررسی شده است.
هدف: بررسی اثر عصاره الکلی بذرگیاه تاتوره بر هیپرآلژزی دیابتی در موش‎های صحرایی نر.

روش‌ تحقیق: در این مطالعه موش‌های صحرایی نر با وزن 350-300 گرم از نژاد NMRI به وسیله تزریق داخل صفاقی استرپتوزوسین (STZ) با تک دوز 60 میلی‌گرم به ازای هر کیلوگرم دیابتی ‌شدند. سپس میزان درد در موش‌های گروه کنترل (15-12=n) و دیابتی (15-12=n) به کمک آزمون‌های صفحه داغ و فرمالین ارزیابی ‌شد.

یافته‌ها: آنالیز آماری داده‌ها نشان ‌داد که متوسط میزان شدت درد حاد و مزمن ناشی از صفحه داغ و فرمالین در موش‌های صحرایی دیابتی افزایش معنی‌داری پیدا می‌کند. در ادامه کار اثر بی‌دردی عصاره الکلی بذر گیاه تاتوره بر هیپرآلژزیای به وجود آمده بررسی شد. در این قسمت دو گروه موش‌های کنترل + عصاره (15-12=n) و همچنین دیابت + عصاره (15-12=n) انتخاب شدند. نتایج آزمایش‌های ما نشان داد که مصرف عصاره بذر گیاه تاتوره از دوز mg/kg/BW 50 به بالا طی 30 روز به صورت دو روز یک‌مرتبه قادر است به صورت معنی‌داری (01/0p<) هیپرآلژزیای="" دیابتی="" را="" در="" آزمون‌های="" صفحه="" داغ="" (درد="" حاد)="" و="" همچنین="" فاز="" اول="" درد="" فرمالینی="" (حاد)="" کاهش="" دهد.="" همچنین="" مشخص="" شد="" که="" عصاره="" گیاه="" تاتوره="" نه="" تنها="" در="" دوز="" مزبور="" بلکه="" در="" دوزهای="" بالاتر="" هم="" قادر="" به="" تخفیف="" هیپرآلژزی="" مزمن="" دیابتی="" ناشی="" از="" تزریق="" فرمالین="">

نتیجه‌گیری: به طور کلی نتایج آزمایش‌های ما نشان داد که واکنش به درد حاد و مزمن ناشی از صفحه داغ و فرمالین به دنبال مصرف استرپتوزوسین و دیابتی شدن موش‌های صحرایی به میزان معنی‌داری افزایش می‌یابد. همچنین عصاره الکلی بذر گیاه تاتوره در دوزهای بالای mg/kg/BW 50 توانایی کاهش درد حاد افزایش یافته درآزمون‌های صفحه داغ و فرمالین (به خصوص در 10 دقیقه بعد از تزریق فرمالین) را دارا می‌باشد، اما عصاره گیاه فوق در دوز مزبور و بالاتر بر هیپرآلژزیای مزمن ناشی از تزریق فرمالین اثر معنی‌داری ندارد.

مصرف قهوه به کاهش بیماری‌های کبدی کمک می‌کند

پژوهشگران آمریکایی در تحقیقی به این نتیجه رسیدند که نوشیدن قهوه می تواند خطر بروز بیماری‌های کبدی ناشی از مصرف الکل را کاهش دهد.
به گزارش روز سه شنبه شبکه خبری بی‌بی‌سی، در این تحقیق که ‪ ۱۲۵هزار و ‪ ۵۸۰مرد و زن بالای ‪ ۲۰سال مورد بررسی قرار گرفتند نشان داده شد که به ازای نوشیدن هر فنجان قهوه در روز خطر بروز سیروز کبدی (تنبلی کبد ) کاهش می‌یابد.

محققان دریافتند در افرادی که بطور متوسط روزی یک فنجان قهوه می‌نوشند احتمال بروز سیروزهای کبدی ناشی از الکل ‪ ۲۰درصد کاهش می‌یابد.
نتایج این تحقیق که در مجله اینترنال مدیسین آرشیو (‪American Medical ‪ (Archives of Internal Medicineبه چاپ رسیده است، می‌افزاید نوشیدن چای خطر بروز بیماری‌های کبدی را کاهش نمی‌دهد.

به گفته محققان در سال ‪ ، ۲۰۰۱بیماری کبدی در ‪ ۳۳۰تن تشخیص داده شد که ‪ ۱۹۹تن از آنان به دلیل نوشیدن الکل به این بیماری مبتلا شده بودند.
بر اساس این تحقیق نوشیدن کمتر از یک فنجان قهوه در روز خطر بروز سیروز کبدی ناشی از نوشیدن الکل را ‪ ۳۰درصد، یک تا سه فنجان ‪ ۴۰درصد و بیش از چهار فنجان ‪ ۸۰درصد کاهش می‌دهد.

این در حالی است که نوشیدن قهوه اندکی به کاهش دیگر سیروزها نیز کمک می‌کند.

یافته‌های جدید پژوهشگران این فرضیه را که در قهوه ماده‌ای وجود دارد که کبد را در برابر سیروزها بویژه سیروزهای الکلی محافظت می‌کند، تقویت می کند. این ماده هنوز ناشناخته مانده است.

منبع: خبرگذاری جمهوری اسلامی ایر


نیمی از داروهای جهانی منشا گیاهی دارد

جهان صنعتی قرن 21 در تکاپوی جایگزینی کامل داروهای شیمیایی با نمونه های گیاهی است.

براساس تحقیق دفتر امور گیاهان دارویی وزارت جهاد کشاوزی، آمار جهانی نشان می دهد که مواد موثر حدود 50درصد داروهای عرضه شده به بازار دارای منشاء گیاهی هستند. در این گیاهان مواد خاصی در طی یک سلسله فرآیندهای ویژه و پیچیده بیوشیمیایی، به مقدار بسیارکم (معمولا کمتر از یک درصد از وزن خشک گیاه) ساخته می شوند که به متابولیستهای ثانویه معروف هستند. گیاهان حاوی مواد موثر در سه دسته اصلی گیاهان دارویی، گیاهان ادویه ای و گیاهان عطری طبقه بندی می شوند. گاهی اوقات یک گیاه به تنهایی در هر کدام از این سه دسته قرار می گیرند. گیاه نعناع با داشتن خاصیت ضدباکتریایی و ضدقارچی، تب بری و کاهش درد هم در صنایع دارویی مورد استفاده قرار می گیرد، هم حاوی اسانس است و هم به عنوان گیاهی عطری به عنوان ادویه از آن استفاده می شود، از گیاهان مشابه نعناع می توان به آویشن، شبت، اسطوخودوس و گشنیز نام برد.
امروزه گیاهان دارویی پس از غنی شدن از ماده موثر دارویی مورد نظر تحت استراتژی های خاص زراعی، در فرآیند استخراج و فرمولاسیون آن ماده موثر (پروسسینگ) قرار می گیرند و سرانجام پس از فرآوری های لازم به مصرف عموم می رسند. اثر شفابخش ماده موثر دارویی گیاهان پس از کاربرد گیاهان دارویی به صورت پروسس شده بیشتر می شود.
کشت و پرورش گیاهان دارویی در جهان در طی چند دهه گذشته به شدت روبه افزایش بوده است. ارزش مبادلات داروهای گیاهی در سال 2000 میلادی از 20 میلیارد دلار فراتر رفته و پیش بینی می شود تا سال 2050 به 5 هزار میلیارد دلار بالغ شود.

همچنین درصد جمعیت استفاده کننده از روشهای طب سنتی بر پایه استفاده از گیاهان دارویی در حال افزایش است.

به طور مثال مردم آمریکا در دهه 80 میلادی بیش از 8 هزار میلیون دلار به نسخه هایی پرداخته اند که حاوی ماده موثر تهیه شده از گیاهان دارویی بوده است. امروزه بیش از 100 میلیون نفر در چین از طریق گیاهان دارویی ارتزاق می کنند.

در حال حاضر هامبورگ بزرگترین مرکز تجارت گیاهان دارویی است و شهرهای نیویورک، مارسی، پاریس، لندن و اوزاکا پس از آن قرار دارند

منبع خبر : کد:11A-1016-08 خبرگزاری کشاورزی ایران (ایانا)19/10/1383دانشمندان: افریقا باید گیاهان بومی را احیا کند

هرچند قاره آفریقا زیستگاه گونه‌های گیاهی بسیار متنوعی است، اما در کشت محصولات کشاورزی اهمیت تنوع محصولات غذایی به فراموشی سپرده شده است و معدود محصولاتی که کشت می‌شود گیاهان بومی این قاره نیستند.
آفریقا با بیش از ‪ ۳۰۰میلیون گرسنه تقریبا تمام غذای خود را از گونه‌های گیاهی معدودی تامین می‌کند که زیستگاه اصلی تقریبا همه آنها خارج از این قاره بوده است.

پرمصرف‌ترین گیاهان در آفریقا یعنی سیب زمینی شیرین، مانیوک، بادام زمینی، و بارهنگ محصول بومی این قاره نیستند و از خارج از این قاره به آفریقا راه یافته‌اند.

این محصولات با آب و هوای آفریقا سازگاری یافته‌اند و به کسب درآمد و سیر کردن شکم مردم کمک می‌کنند. اما گروهی از کارشناسان شامل مهندسان زراعی، متخصصان علوم تغذیه، بوم شناسان، حشره شناسان، و کارشناسان سیاسی می‌گویند گیاهان بومی با قابلیت‌های خوب نیز باید در آفریقا کشت شود.

این گروه ‪ ۱۸محصول کشاورزی را معرفی کرده‌اند که مورد بی‌توجهی قرار گرفته‌اند و روی آنها تحقیق و سرمایه‌گذاری انجام نمی‌شود.
این گروه به رهبری نورمن بورلاگ برنده جایزه صلح نوبل می‌گویند کشت محصولات بومی که برای پرورش در این قاره مناسب هستند علاوه بر آنکه با سوء‌تغذیه مقابله و به امنیت غذایی کمک می‌کند برای کشاورزان درآمدزاست و برای خاک این مناطق نیز مناسبتر است. پرورش این محصولات باعث کاهش فرسایش خاک و حفظ بوم‌شناسی و میراث ژنتیکی این قاره می‌شود.
تحقیقات علمی به اصلاح بسیاری از این محصولات کشاورزی کمک می‌کند و در ضمن لازم است که این محصولات به کشاورزان معرفی شود.
بررسی خواص غذایی این محصولات، آزمایش سم‌شناسی آنها، تحقیقات به‌زراعی مطالعه در مورد بهترین شیوه کشت و بدست آوردن بیشترین محصول توصیه‌هایی است که این کارشناسان برای دانشمندان دارند.
این کارشناسان بنیادها و سازمانهای غیر دولتی را نیز به کمک مالی و ترویج این محصولات تشویق می‌کنند.

کالستوس یوما کارشناس توسعه و زیست شناس دانشگاه هاروارد می‌گوید تنوع محصولات کشاورزی به امنیت غذایی کمک می‌کند.

یوما به دنبال انقلاب سبز جدیدی بر مبنای محصولات متنوع بجای کشاورزی تک محصولی ، تعیین توالی ژنوم محصولات و شکوفایی مشارکت دانشگاههای آمریکایی و آفریقایی است.

شاید جالبترین این گونه‌های گیاهی در آفریقا، درخت مورینگا‪moringa باشد که در این گزارش به سوپرمارکتی بر روی تنه یک درخت توصیف شده است.
برگها، دانه و تخم این درخت بسیار مغذی است و ریشه آن طعم خوشمزه ترب کوهی را دارد. این درخت روغن عالی تولید می‌کند که برای روغن کاری دستگاههای ظریف یا چوب، چراغ ، مرهم پوست، داروهای سنتی و حتی تصفیه آب کاربرد دارد. بجای زاج سفید که گرانقیمت است، دانه‌های این درخت داخل آب گل‌آلود ریخته می‌شود و گل و لای آن ته‌نشین می‌شود. این درخت هر سال ‪ ۵متر رشد می‌کند.

کلاوس بکر از دانشگاه هوهنهایم در اشتوتگارت آلمان مدت ‪ ۱۵سال بر روی این درخت تحقیق کرده است و به تازگی به ارزش آن برای کشت آبی (‪ (aquacultureبه عنوان غذای ماهی پی برده است

منبع خبر : ،خبرگزاری جمهوری اسلامی ‪۸۵/۰۸/۱۰



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

مدیریت تولید

چهارشنبه 10 آذر 1395

مدیریت تولید


مدیریت تولید [۱]، عملکردی است که عهده‌دار مسئولیت برنامه‌ریزی تاکتیکی و راهبردی فراورده‌های موجود و جدید یک شرکت است.[۲] مدیریت فراورده، عملکرد چرخهٔ حیات سازمانی در درون یک شرکت است که با برنامه‌ریزی یا پیش‌نگری یا بازاریابی فراورده یا فراورده‌ها در همهٔ مراحل چرخهٔ حیات محصول سروکار دارد.[۳]

مدیریت تولید یک فعالیت درون سازمانی است که از پیش‌بینی، برنامه‌ریزی و بازاریابی برای محصولات یا خدمات تشکیل می شود. مدیر تولید همواره دغدغه توسعه محصول و بازاریابی محصول را دارد و این دو فعالیت نهایتاً منجر به افزایش درامد، افزایش سهم بازار و افزایش حاشیه سود خواهند شد. از طرف دیگر یک مدیر تولید باید در مورد تحلیل بازار و کارایی ها و ویژگی های محصول مسئولیت پذیر باشد. ازین رو در ساختارهای سازمانی مختلف بعضاً مدیر تولید یک جایگاه سازمانی مشخص و معین را دارد و در بعضی موارد عضو بخش های فروش و بازاریابی و یا عضو بخش مهندسی محسوب می شود.

معمولاً برای بررسی عملکرد مدیران تولید شاخصه های سود و ضرر یک بنگاه مورد ارزیابی قرار میگیرد. یک مدیر تولید باید بتواند خواسته ها و نیازهای بخش فروش و بازاریابی را به بخش های مهندسی و فرایند سازمان انتقال دهد و از طرف دیگر باید بتواند محدودیت های بخش مهندسی و طراحی با توجه به شناختی که از بازار و خواسته مشتریان دارد برطرف نماید تا محصول بدست آمده با هزینه ای منطقی بتواند پاسخگوی بخش عمده ای از نیازهای مشتریان باشد.



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: مدیریت، تولید

بررسی و شرح کارخانه ریخته گری آلومینیوم تولید کننده سرسیلندر و پوسته کلاچ

پنج‌شنبه 4 آذر 1395

بررسی و شرح کارخانه ریخته گری آلومینیوم تولید کننده سرسیلندر و پوسته کلاچ

کارخانه ریخته گری آلومینیوم

هدف این بخش تولید سیلندر و سر سیلندر و پوسته کلاج پژو می باشد. در این قسمت ریخته گری سیلندر از نوع تحت فشار که از دستگاه High Pressure با قدرت

2500 HP که یک دستگاه ژاپنی است استفاده می شود و پوسته کلاج و سرسیلندر با دو دستگاه Low Pressure با قدرت 1600 HP که دستگاه ایتالیایی است تولید می شود البته قبلاً در این واحد دستگاه ریژه ریزی نیز موجود بود که با توجه به طرح انتقال بخش ریخته گری به شهرستان ابهر این دستگاه جمع آوری و به ابهر منتقل شد.

در قسمت تولید ذوب از 5 کوره استفاده می شود که این کوره ها شعله ای بوده و دمای حداکثر آنها در حدود می باشد. سه کوره آن برای تامین ذوب قسمت سیلندر با ظرفیت سه تن و سرعت تولید یک تن در ساعت بکار می رود دمای ذوب هنگامی که درون با قبل ریخته می شود حدود 750- 730 درجه سانتگراد می باشد که توسط لیفتراک به قسمت ریخته گری سیلندر حمل می شوند. درجه حرارت مذاب هنگام تحویل در قیمت ریخته گری سیلندر به می رسد که در کوره نگهدارنده، موجود می باشد و دو کوره دیگر هر کدام با ظرفیت ذوب 500 کیلوگرم و سرعت تولید 150 کیلوگرم در ساعت موجود می باشند و برای قسمت سر سیلندر بکار می روند.

در مورد گاز زدایی در این کوره ها باید گفت با توجه به ویژگی فلز آلومینیوم و اینکه گازها کمتر از حالت انحلال خارج می شوند در قسمت سیلندر نیازی به گاز زدایی نمی باشد اما برای سر سیلندر از گاز آرگون که توسط دستگاهی به کوره متصل است استفاده می شود. مهمترین مشخصات گاز زدایی مذاب سر سیلندر عبارتند از :

سرعت دوران دهنده گاز 400-450 RPM

زمان گاز زدایی 15-12 دقیقه

درجه حرارت شروع گاز زدایی

نوع گاز مصرفی : آرگون

فشار گاز ورودی : 5/2 اتمسفر

درصد خلوص گاز مصرفی 99/99%

در حدود چهار دقیقه پایانی گاز زدایی مواد :

AL:Sr10%

AL:Mg50%

به منظور اصلاح ساختار و جوانه زنی و آلیاژ سازی در چهار دقیقه پایانی

AL-Sr10% و AL-Mg50% افزوده و دوباره گاز زدایی می کنیم همچنین از فلاکس Coveral11 که یکی ترکیب فلوئوریدی می باشد استفاده می کنیم.

تولید سیلندر با دستگاه HP

از دستگاه HighPressure به منظور تولید سیلندر پژو استفاده می شود این دستگاه 180 تن وزن دارد و نیروی قفل شدن قالب ها 2500 تن و نیرویی که عملShout را انجام می دهد 850 ( ) می باشد. کوره نگهدارنده آن 2500 کیلوگرم وزن دارد و دمای ذوب حدود 720 درجه سانتیگراد می باشد.

دستگاه از دو قسمت تشکیل شده است.

1) فک ثابت:

2) فک متحرک که امکان قفل شدن قالب ها و شات کردن مذاب را می دهد. زمان کل تولید یک قطعه سه دقیقه می باشد و برای سیستم شات از سیستم هیدرولیک و گاز ازت استفاده می شود.

برای تهیه سیلندر از مذاب آلیاژ AS9U3 استفاده می شود برخی از نکات در تهیه این مذاب عبارتند از :

1- در صورت سرد بودن کوره عملیات پیش گرم به صورت کافی، صورت می گیرد تا دیواره کوره سرخ شود.

2- مواد اولیه و شارژ اولیه بصورت 50%شمش و 50%برگشتی سالن می باشد.

3-پس از ذوب کامل شارژ، دمای مذاب به حدود می رسد.

4- فلاکس Coverall11 به نسبت 500gr به ازاء 100 کیلوگرم مذاب روی سطح مذاب ریخته و پس از هم زدن در سطح مذاب عمل سرباره گیری صورت می گیرد.

5- دمای مذاب هنگام آلیاژ سازی می باشد.

6- مذاب با ترکیب شیمیایی و درجه حرارت حدود داخل پاتیل پیش گرم و تخلیه می شود. مذاب با ابزار دستی به هم زده می شود. در حین تخلیه مذاب در پاتیل AL -50Mg% به مذاب افزوده می شود.

7- مقداری فلاکس بر سطح مذاب داخل پاتیل ریخته و در سطح هم زده و سرباره گیری می شود.

8- ابزار مورد استفاده در واحد ذوب باید پیش گرم و پوشش داده شود.

9- دمای ذوب نباید از بالاتر رود.

10- روزی یک مرتبه دیواره کوره ذوب و پاتیل با ماده Coverall 88 تمیز می شود.

ترکیب شیمیایی مذاب:

Si

Fe

Cu

Mg

Ti

Zn

Ni

Pb

Sn

Fe+Mn

Min

25/8

6/0

8/2

__

2/0

__

__

__

__

__

Man

75/9

9/0

7/3

2/0

35/0

1

5/0

2/0

2/0

1/1

در مورد دستگاه HP باید گفت دارای سیستم خنک کننده از دو نوع زیر است

1- مدارهای داخلی سیستم

2-اسپری ماده خنک کننده که شامل آب و ماده روان ساز است.

کنترل درجه حرارت مذاب چدن

مذاب از کوره فرعی وارد کوره ما در ( کوره نگهدارنده ) می‌شود و دمای کوره همیشه باید کنترل شود که از المنتی که بوسیله سیم به صفحه دیجیتالی وصل است استفاده می‌شود بر روی المنت‌ها یک پوشش سرامیکی قرار دارد.

اگر مذاب دارای دمای پائینی باشد امکان بروز عیب نیامد و ایجاد سرد جوشی در قطعات تولیدی می‌شود و اگر درجه حرارت مذاب بسیار بالا باشد امکان ماسه سوزی و اکسید شدن مذاب و ترکیب مذاب با جداره نسوز و تولید سرباره و یا ایجاد مک‌های گازی درشت در قطعه که به آن سوسه می‌گویند وجود دارد.

واحد شات بلاست Shot Blost

شات بلاست دستگاهی است که توسط پرتاب ساچمه‌های ریز با سرعت بالا به دست قطعه آن را تمیز می‌کند جنس ساچمه از نوع فولاد می‌باشد و جنس بدنه دستگاه از فولاد یا چدن پرکروم می‌باشد. در این قسمت نباید قطعات بیشتر از دوبار ساچمه‌زنی شوند زیرا باعث کاهش استحکام قطعه‌می‌شود.

واحد سنگ زنی

پس از تمیز کاری قطعات در واحد شات بلاست سیلندر و سرسیلندر، جهت از بین بردن زائده‌های یاقیمانده به قسمت سنگ زنی هدایت می‌شوند بعد از سنگ زنی سوراخها و مک‌ها را با جوشکاری پر کرده و با سنگ صاف می‌کنند.

واحد واتر تست

در این واحد دو دستگاه واتر تست موجود است که یکی از آنها برای سیلندر و دیگری برای سرسیلندر می‌باشند که نشستی را کنترل می‌کنند. در این دستگاه هوا با فشار به داخل قطعه اعمال می‌شود. البته تمام منافذ خروجی هوا توسط دستگاه بسته می‌شود. سپس قطعه در داخل آب فرو برده می‌شود و در صورتی که از داخل آب حبابی خارج نشود سالم بودن قطعه نتیجه می‌شود در غیر این صورت جزو قطعات ضایعاتی محسوب می‌شود.

واحد کنترل نمایی قطعه

در این قسمت یک کنترل برروی قطعات انجام می‌شود که باید دارای خصوصیات زیر باشد:

زمینه پرلیتی ـ فریتی که بیشتر از 95% پرلیت داشته باشد و سختی در حدود HB 235-797 و 70% گرافیت نوع A.

واحد آزمایشگاه

درسه بخش مستقل از هم مشغول فعالیت می‌باشند که عبارتند از :

الف) آزمایشگاه ماسه: در این آزمایشگاه در هر ساعت نمونه‌هایی از ماسه خط قالب‌گیری و ماهیچه‌سازی گرفته شده و درصد رطوبت، استحکام فشاری، تراکم پذیری، درصد خرد شوندگی و نفوذ پذیری آن اندازه‌گیری می‌شود. ضمناً آزمایشات درصد خاک رس فعال و غیر فعال، درصد مواد سوختنی نیز به طور روزانه محاسبه می‌شود.

ب) آزمایشگاه شیمی‌تر: در این آزمایشگاه آزمایشات آنالیستی، مواد مورد مصرفی و تطبیق آن با استانداردهای موجود انجام می‌شود.

ج) ازمایشگاه فیزیک: به این قسمت مجهز به دستگاه کوانتومتر ARL که 22 عنصر را آنالیز و میکروسکوپ متالوگرافی LEITZ که امکان بزرگنمایی تا 2500 برابر را دارا می‌باشد.

تولید ماهیچه

در کارگاه ریخته‌گری جمعاً 14 نوع ماهیچه به روشهای ( Hot Box ) و ( Cold Box ) تولید می‌شوند که از این تعداد 9 ماهیچه برای تولید سیلندر با نامهای 1- ماهیچه بدنه شماره 1. 2- ماهیچه بدنه شماره2. 3- ماهیچه بدنه شماره3. 4- ماهیچه بدنه شماره4.

که این چهار ماهیچه هر کدام جای میل لنگ و پیستون را تعبیه می‌کند. راهگاه مذاب در این ماهیچه‌ها تعبیه شده است. 5- ماهیچه واتر جاکت برای عبور آب سیلندر. 6- ماهیچه سینی کوچک برای تعبیه واتر پمپ. 7- ماهیچه سینی بزرگ برای تعبیه فلایویل. 8- ماهیچه کاسه. 9- ماهیچه میل سوپاپ.

تمام ماهیچه‌های سیلندر بصورت کشوئی درهم فرو می‌رود و کل این مجموعه در قسمت قالب‌گیری توسط دستگاه میکسچر برداشته و در قالب جایگذاری می‌کنند. البته 5 نوع ماهیچه نیز جهت سر سیلندر تولید می‌شوند که عبارتند از :

1ـ ماهیچه جهت محل عبور بنزین.

2ـ ماهیچه دود.

3- ماهیچه اتاق که نشیمنگاههای سوپاپ را می‌سازد.

4- ماهیچه مسیر عبور آب در سر سیلندر.

5- ماهیچه شمع.

ماهیچه‌های سرسیلندر پس از رنگ شدن و خشک شدن و پخته شدن در گرمخانه جهت مونتاژ و نصب به خط قالب‌گیری منتقل می‌شوند.



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

بررسی تولید آهن به روش اسفنجی

پنج‌شنبه 4 آذر 1395

بررسی تولید آهن به روش اسفنجی


مقدمه

از بین روشهای صنعتی احیای مستقیم کانه های آهن که از گاز طبیعی استفاده می کنند ، تولید اهن اسفنجی به روش میدرکس توسعه چشم گیری داشته است . باردهی مداوم آهن اسفنجی به صورت سرد یکی از روش میدرکس می باشد . واحدهای متعددی به این روش در دهه اخیر در کشورهای مختلف تاسیس و شروع به کار کرده اند .

ابداع روش میدرکس به وسیله D .Beggs w .t .marton و تحقیقات لازم برای توسعه آن از سال 1965 میلادی درشرکت میدلند- روس انجام گرفت . در سال 1976 میلادی یک واحد احیای مستقیم آزمایشی با تولیدی برابر 5/1 تن آهن اسفنجی در ساعت در توله دو واقع در اوهیو و سپس واحد دیگری به ظرفیت سالیانه 150هزار تن در پرتلند ، آمریکا تاسیس شد که در سال 1969 میلادی شروع به تولید کرد . متعاقباً ، واحدهای دیگری در چرجتاون آمریکا و در کارخانه فولادسازی هامبورگ، تاسیس شدند که در سال 1971 میلادی راه افتادند . واحد بعدی سیدبک رد کانادا بود که در سال 1973 میلادی راه اندازی شد . در ژانویه 1974 میلادی ، اجازه ساخت کارخانه های تولید آهن اسفنجی به روش میدرکس به گروهفولاد کورف واگذار شد.

در کشورهای پیشرفته صنعتی مانند آمریکا و آلمان فدرال، کانادا ، اتحاد جماهیر شوروی و نیز کشورهایی که دارای منابع غنی گاز طبیعی هستند ، در دهه گذشته از تولید آهن اسفنجی به روش میدرکس استقبال کرده اند .

مضافاً به اینکه ابعاد و ظرفیت تولید آهن اسفنجی کوره های احیا در واحدهای میدرکس گسترش چشمگیری یافته است و مثلاً قطر کوره احیا در مدول 200 ، 6/3 متر ، قطر کوره احیا در مدول 400 ، 88/4 متر ، ظرفیت روزانه نسل اول آن مدول 1000 و ظرفیت روزانه نسل دوم آن 1250 تنبودهاست اما قطر کوره احیا در مدول 400 به 5/5 متر و ظرفیت روزانه آن به حدود 1700 تن اهن اسفنجی افزایش یافته است . به عقیده سازندگان واحدهای میدرکس گسترش ظرفیت کوره های احیا به دلایل اقتصادی ممکن می باشد . گرچه در این زمین دلایل کافی در دست نیست ولی این امر طبیعی به نظرمی رشد .

در اغلب روشهای صنعتی تولید آهن اسفنجی به روش میدرکس ، گاز طبیعی به عنوان عامل احیا کننده و گرما زا مصرف می شود . یک واحد میدرکس از دو قسمت اصلی تشکیل می شود :

قسمت اول ، تجهیزات لازم برای تبدیل گاز طبیعی به گاز احیا کننده .

قسمت دوم ،تجهیزات لازم برای احیای کسیدهای آهن توسط گاز احیا کننده .

تولید آهن اسفنجی گاز احیا کننده به روش میدرکس مداوم است . درزیر باختصار تجهیزات واحدهای میدرکس تشریح می شود .

ذکر این نکته ضروری است که چون تجهیزات واحدهای مختلف و نیز ویژگی احیا به این روش در دهه گذشته تغییرات زیادی داشته لذا خصوصیات ارائه شده در زیر مربوط به واحدهایی است که ویژگی آنها در منابع منتشر شده و برای کلیه واحدهای میدرکس عمومیت ندارد .

تجهیزات انتقال بار به کوره احیا و تخلیه آهن اسفنجی از کوره به روش میدرکس

در سیستم میدرکس ، بار گندله یا سنگ آهن خرد شده پیش از ورود به سیلوهای روزانه سرند می شوند. دانه بندی بار برای کوره از این قرار است :

بار درشتر از 50 میلیمتر

بار بیشتر از 6تا50 میلیمتر

بار بین 3 تا 6 نیلیمتر

و بار زیر 3 میلیمتر

بار با دانه بندی 6 تا 50 میلیمتر و 3 تا 6 میلیمتر به نسبت معینی در کوره احیا تغذیه می شود . برای دانه بندی گندله و یا سنگ آهن خرده شده و به روش میدرکس تجهیزاتی پیش بینی شده است . همچنین آهن اسفنجی تولید شده در کوره احیا پیش از ورود به سیلوها و مصرف مستقیم سرند می شوند و نرمه آن در برخی از واحدها به خشته تبدیل شده و در برخی مستقیماً در کوره های قوس الکتریکی به مصرف می رسد . طرح برخی از تجهیزات انتقال گندله و سنگ آهن خرد شده به کوره و نیز آهن اسفنجی به صورت گندله و یا کلوخه در می آید .

در یک میدرکس بار به وسیله نوار نقاله از سیلوهای روزانه به مخزن تغذیه قیف مانندی که در بالای کوره قرار گفته ،تخلیه میگردد . این مخزن در واحدهای میدرکس مستقر در مجتمع فولاد اهواز 75 متر مکعب گنجایش دارد . هنگامی که نوار نقاله کار نمی کند ، گندله این مخزن به عنوان ذخیره مورد استفاده قرار می گیرند .ضمناً گندله می تواند توسط یک اسکیپ بالا برنده (به جای نوار نقاله ) در این مخزن تخلیه گردد .

سطح مواد در مخزن بالای کوره از طریق میله ای رادیو اکتیو تعیین می گردد. این میله از طرفی با سطح بار و از طرف دیگر با سیستم کنترل در تماس می باشد و سطح بار به طور اتوماتیک اندازه گیری می گردد . در صورتی که گندله در این مخزن در چهار سطح زیر باشد . سیستم کنترل علائم هشدار دهنده ذیل را مخابره می کند :

1-بالاترین سطح بار: اخطار داده می شود

2-پر : دستور توقف نوار نقاله تغذیه کننده بار به مخزن صادر

می گردد.

3-خالی : دستور کارنوار نقاله تغذیه کننده باربه مخزن صادر میشود .

4-پایین ترین سطح: تخلیه کوره متوقف و اخطار لازم داده می شود .

مخزن بالای کوره توسط لوله نسبتاً طویلی به قسمت توزیع کننده بار (آپولو) ارتباط دارد. چون مخزن تغذیه بار در بالای موره روباز است ، لذا برای جلوگیری از داخل کوره جریان دارد و فشارآن به طور اتوماتیک کنترل می گردد . به این وسیله از نشت گاز احیا کننده کوره به خارج جلوگیری به عمل می آید . گاز خنثی نیز به علت طویل بودن لوله های رابط بین مخزن تغذیه بار و 12 لوله توزیع کننده بار در کوره به خارج کوره نفوذ نمی کند . مضافاً به اینکه زیر مخزن تجهیزاتی برای آب بندی گاز پیش بینی شده است که از این قرار می باشند :

1- دریچه کشوئی هیدرولیکی که در هنگام خالی شدن مخزن به طور اتوماتیک بسته می شود و از خروج گاز به خارج جلوگیری به عمل می آورد .

2- فلانچها که برای جلوگیری از خروج گاز نصب شده و در مواقع اضطراری آنها به وسیله بازوی هیدرولیکی از هم باز و یک صفحه به وسیله دست بین آنها قرار داده می شود .

3- یک کمپنزاتور که برای تعدیل انبساط حرارتی کوره پیش بینی شده است .

توزیع یکنواخت گدله در کوره احیا برای جریان یکنواخت گاز احیا کننده در بین گندله ها از اهمیت خاصی برخوردار است . با احیای بار گندلهدر کوره ، درجه فلزی آن بالا می رود ، درجه فلزی آهن اسفنجی تولید شده در کورههای میدرکس حدود 92 در صد و اکسید آهن احیا نشده در آهن اسفنجی به صورت وسیت می باشد .

در شروع راه اندازی کوره احیا ، بار به میزان کافی احیا نمی گردد . لذا درجه فلزی آهن اسفنجی تولید شده کافی نیست به این علت بار مجدداً به کوره برگشت داده می شود . مسیر جریان بار برگشتی به کوره نیز می شود .

گندله های آهن اسفنجی سرد پس از خروج از کوره سرند می گردند . میزان نرمه آهن اسفنجی زیر 5 میلیمتر در روند احیا به روش میدرکس حدود 2/0 در صد است . نرمه می تواند مستقیماً یا پس از خشته شدن در واحد فولاد سازی مصرف می گردد . آهن اسفنجی درشتر از 50 میلیمتر خرد و همراه سایر گندله ها به مخزن ذخیره حمل ودر آنجا انبار می شوند . طرح تجهیزات دانه بندی گندله های آهن اسفنجی داده شده است . همچنین سیلوهای ذخیره آهن اسفنجی دیده می شود . در این مخازن برای جلوگیری از اکسایش گندله ها ، گازی خنثی جاری است .

تجهیزات کوره احیا به روش میدرکس

واحدهای صنعتی احیای مستقیم که به روش میدرکس آهن اسفنجی تولید می کنند در دهه گذشته به سرعت تکامل یافته اند . در این بخش کوشش می شود باختصار تجهیزات کوره های تولید آهن اسفنجی به روش میدرکس که مشابه آنها در مجتمع فولاد اهواز مستقر هستند و یا در مبارکه مستقر خواهند شد بررسی شود .

کوره احیا به روش میدرکس

کوره احیا در روش میدرکس از یک قسمت فوقانی و یک قسمت تحتانی تشکیل شده است . قسمت فوقانی کوره که منطقه اصلی احیا می باشد، استوانه ای به قطر 8/4 تا 5 متر و ارتفاع 9 متر است که حجم مفید آن حدود 220 متر مکعب می باشد ، اما کل ارتفاع کوره 12 تا 14 متر می باشد .

بار به صورت سنگ آهن خزد شده یا گندله سنگ آهن از بالای کوره به طرف پایین جریان داشته و در مدتی حدود 5/6 ساعت در منطقه احیا به وسیله گاز احیا کننده به اهن اسفنجی تبدیل می شود . گاز احیا کننده از بالای کلوخه شکنهای فوقانی ازطرق لوله کمربندی وارد کوره شده ودرخلاف جهت نزول بار ، جریان می یابد . گاز کم کم سرد و پس از حذف رطوبت گندله ، آن را احیا و خود تا اندازه ای اکسید می شود . طرح لوله کمربندی برای توزیع گاز احیا کننده در کوره آمده است .

درجه حرارت و فشار در کوره احیا

احیای اکسیدهای آهن به روش میدرکس به طور کلی بر اساس واکنش زیر انجام می شود :

1- Fe2o3 +3h2 = 2fe+3H2O

2- Fe2o3+3co=2fe+3vo2

جداره داخلی کوره توسط نسوزهای مقاوم در برابر سایش و مواد عایق پوشانده شده است تا از تلفات حرارتی کوره تا اندازه ای کاسته شود، مع هذا دمای دیواره خارجی کوره حدود 100 درجه سانتیگراد می باشد . تغییر دمادر طول کوره احیا به صورت شماتیک نشان داده شده است.ملاحظه می گردد که درجه حرارت در قسمت عمده طول کوره تا اندازه ای ثابت می باشد .

کوره های تولید آهن اسفنجی به روش اچ وای ال یک و دو در دوره تخلیه آهن اسفنجی

چون بستر بار در کوره های واحد اچ وای ال یک و دو در تمام دوره احیای گندله های سنگ آهن و نیز سرد کردن آهن اسفنجی ثابت می باشد ، لذا ، احتمال به هم چسبیدن ، گندله های آهن اسفنجی و خوشه شدن آنها زیاد است . هنگام تخلیه آهن اسفنجی از کوره دریچه خروج بار باز می شود و گندله های آهن اسفنجی به مخزن آهن اسنجی واقع در پایین کوره می ریزند .

هرگاه گندله های آهن اسفنجی درون کوره به یکدیگر چسبیده باشند ، بازوی هیدرولیکی که در پایین کوره قرار دارد به داخل کوره وارد می شود . گندله های به هم چسبیده در اثر حرکت رفت وبرگشتی و دورانی این بازو در کوره از یکدیگر جدا می شدند و به این وسیله امکان تخلیه آنها فراهم می گردد .

مراحل تولید آهن اسفنجی در واحد اچ وای ال یک و دو

گاز احیا کننده تولید شده به روش اچ وای ال در راکتور تبدل گاز طبیعی ، نخست از یک مبدل حرارتی کاهنده دما و شستشو دهنده گذشته و دمای آن تا حدود 230 درجه سانتیگراد پایین می آید . در این مرحله ، مقداری از بخار آب و گاز کربنیک آن حذف و در نتیجه میزان درصد هیدروژن و اکسید کربن آن افزایش می یابد . از حرارت این گاز جهت تولید بخار استفاده می شود گاز احیا کننده مزبور وارد کوره ای می شود که گندله کانه آهن به طور کامل احیا شده و آهن اسفنجی در دوره سرد کردن است . در این فرایند ، همان طور که پیش از این اشاره شد، عملکردهای زیر تواماً انجام می شود :

-آهن اسفنجی سرد می شود

-آهن اسفنجی کربن می گیرد و حتی بر سطح آن دوده می نشیند

-گاز احیا کننده گرم می گردد .


در این روند ، مقدار در صد گاز کربنیک گاز احیا کننده کمی افزایش می یابد. لذا، پس از عبور از برج شستشو دهنده مقداری از بخار آب و گاز کربنیک آن حذف و مجدداً در راکتور پیش گرم کننده گاز تا دمای 800درجه سانتیگراد گرم می شود . قسمتی از این گاز در مشعلهای نصب شده در محفظه احتراق کوره های احیا سوخته و پیش از مصرف ، دمای آن به حدود 1040 درجه سانتیگراد و درجه اکسید کنندگی آن به حدود 12 درصد می رسد .

این گاز از بالای کوره ای که گندله های کانه آهن نیمه احیا شده از دوره پیش در آن موجود است ، وارد می شود . عملکرد احیای گندله ها با این گاز آنقدر ادامه می یابد تا درجه فلزی آهن اسفنجی به حد معینی برسد . گاز احیا کننده در این روند از قسمت پایین کوره خارج می شود . این مرحله را احیای نهایی گندله های کانه آهن می نامند .

بهره شیمیایی از گاز احیا کننده خارج شده از کوره خارج شده از کوره فوق الذکر در مرحله احیای نهایی ، کافی نیست . به این دلیل در صد زیادی هیدروژن و اکسید کربن در گاز احیا کننده هنوز باقی است . لذا پس از شستشو و گرم شدن تا حدود دمای 800 درجه سانتیگراد در راکتور پیش گرم کننده گاز ، قسمتی از آن در مشعلهای محفظه احتراق کوره بعدی که گندله سنگ آهن تازه در آن بار شده ، می سوزد و دمای آن به 1040 درجه سانتیگراد می رسد . این گاز احیا کننده نیمه مصرف شده در بالای کوره فوق الذکر وارد و گندله های سنگ آهن تازه بار شده را تا حدودی احیا می کند . گاز خروجی از این کوره نیزحاوی مقداری هیدروژن و اکسید کربن است . این گاز نیز پس از شستشو حهت تامین سوخت راکتورهای حرارتی مصرف می گردد . ولی چون انرژی حرارتی آن کافی نیست مقداری گاز طبیعی به آن اضافه می شود .

کوره شماره 1 در دوره تخلیه آهن اسفنجی یا بار کردن گندله سنگ آهن ،کوره شماره 2 در دوره سرد کردن آهن اسفنجی و کربن دادن به آن و کوره های شماره 3و 4 در دوره احیا هستند . گاز احیا کننده به ترتیب از کورههای شماره 2و3و4 عبور می کند و سپس به عنوان سوخت در مشعلها به مصرف می رسد . در این مرحله از کار واحد اچ وای ال مشعل کوره شماره 2 که در دوره سرد کردن آهن اسفنجی و کربن دادن به آن است و نیز کوره شماره 1 که در دوره تخلیه آهن اسفنجی یا بار کردن گندله سنگ آهن هستند ، خاموش می باشند . اما گاز احیای کننده همواره قبل از ورود به کوره های شماره 3و4 در راکتورهای گرم کننده گاز و در داخل کوره ، پیش از تماس با گندله ها . توسط مشعلهایی گرم می شود .

هوای سوخت برای گرم کردن راکتورهای گرم کننده نیز در راکتورهایی گرم می شود .مسیر جریان گاز احیا کننده هوای سوخت و آب شستشو دهنده یک واحد اچ وای ال یک مشتمل برطرح چهار کوره ، یک راکتور تولید گاز احیا کننده (رفورمر) ، برجهای شستشو دهنده و راکتورهای پیش گرم کننده گاز می باشد .

حرارت لازم برای تولید بخار آب در روش اچ وای ال

حرارت لازم برای گرم کردن آب و تولید بخار آب برابر با حرارت منتقله توسط دود متصاعد در قسمت فوقانی تنوره بازیاب حرارت راکتور تبدیل گاز در مراحل 5و6و7 ، به علاوه حرارتی که آب دیگ بخار بر اثر سرد کردن گاز احیا کننده از مرحله 3 به مرحله 4 در راکتور کاهنده درجه حرارت گاز احیا کننده می گیرد.

میزان گاز لازم در روش اچ وای ال یک ودو

میزان گاز طبیعی لازم برای تولید یک تن آهن اسفنجی بر اساس پیشنهاد کمپانی سازنده واحدهای اچ وای ال دو ، در سال 1980 میلادی طبق جدول زیر است :

کل گاز طبیعی لازم برای تولید گاز احیا کننده 456 متر مکعب

گاز طبیعی اضافی جهت تامین کمبود سوخت مشعلها در راکتور تولید گاز

احیا کننده 3/42 متر مکعب

گاز طبیعی جهت تامین کمبود سوخت برای تولید بخار آب

5/14 متر مکعب

گاز طبیعی برای تامین سوخت راکتورهای گرم کننده گاز خروجی کوره های احیا 6/6 متر مکعب

جمع کل : 4/519 متر مکعب

با احتساب ارزش حرارتی گاز طبیعی (9283کیلو کالری به ازای هر متر مکعب)، حرارت لازم برای یک تن آهن اسفنجی به روش آچ وای ال برابر است با :

کیلوکالری با ازای یک تن آهن اسفنجی 4821590= 9283*4/519

گیگا کالری به ازای یک تن آهن اسفنجی

ذکر این نکته لازم می باشد که ویژگی آهن اسفنجی تولیدی در برآورد فوق مشخص نشده است .

تولید آهن اسفنجی به روش اچ وای ال سه

تولید آهن اسفنجی به روش اچ وای ال سه بر اساس استفاده از گاز طبیعی به عنوان عامل احیا کننده و گرما زا در یک کوره تحت فشار استوار است .این روش بر عکس روش اچ وای ال یک و دو ، روشی مداوم است .وجه تمایز کلی آهن اسفنجی به روش اچ وای ال سه نسبت به یک و دو در جایگزین کردن چهار کوره با بستر ثابت و تولید غیر مداوم در اچ وای ال یک و دو به وسیله یک کوره در اچ وای ال سه با بستری متحرک و تولیدی مداوم است .

احیای سنگ آهن به روش اچ وای ال سه

برای تولید آهن اسفنجی با 92 درصد فلزی و 8/1 درصد کربن است. بخش احیا در یک واحد اچ وای ال سه از مدار احیا و مدار سرد کننده آهن اسفنجی تشکیل می گردد .

بررسی کلی مطالب

تولید آهن اسفنجی به روش اچ وای ال یک از اولین روشهای احیای مستقیم است که بر اساس مصرف گاز طبیعی به عنوان احیا کننده و گرمازا در سطح صنعتی بکار گرفته شده است . این روش در سالهای نخست ، روشی ابتدایی و غیر مداوم (اچ وای ال یک و دو) بوده و سپس به روشی مداوم اچ وای ال سه تبدیل شده است . در کلیه روشهای اچ وای ال ،گاز طبیعی به طور مداوم توسط بخار آب به هیدروژن و اکسید کربن تبدیل می شود . تولید آهن اسفنجی در روشهای اچ وای ال یک و دو به طور غیر مداوم می باشد . برای بهره مطلوبتر از گاز احیا کننده ، یک واحد اچ وای ال یک و دو چهار کوره احیا دارد که به ترتیب دوره های بار کردن احیای اولیه و احیای نهایی گندله سنگ آهن و سرد کردن و تخلیه آهن اسفنجی را می گذرانند . در روش اچ وای ال سه ، بار کردن و احیای گندله سنگ آهن و نیز سرد کردن و تخلیه آهن اسفنجی در یک کوره و به طور مداوم انجام می شود .


فهرست مطالب

مقدمه ۴
تجهیزات انتقال بار به کوره احیا و تخلیه آهن اسفنجی از کوره به روش میدرکس ۶
تجهیزات کوره احیا به روش میدرکس ۱۰
کوره احیا به روش میدرکس ۱۰
درجه حرارت و فشار در کوره احیا ۱۱
توزیع گاز سرد کننده آهن اسفنجی در کوره احیا ۱۲
خوشه شکنهای کوره احیا ۱۳
پاروی تخلیه آهن اسفنجی در کوره میدرکس ۱۴
تولید گاز احیا کننده به روش میدرکس ۱۴
ساختمان راکتور تولید گاز احیا کننده به روش میدرکس ۱۵
لوله های راکتور گاز احیا کننده به روش میدرکس ۱۷
کنترل راکتور تولید گاز احیا کننده (رفورمر) به روش میدرکس ۱۷
کاتالیزور و مواد خنثی در لوله های راکتور تولید گاز احیای کننده به روش میدرکس ۱۹
بازیاب حرارتی (رکوپراتور) واحد میدرکس ۲۱
سیستم شستشوی گاز خروجی کوره احیا و گاز سرد کننده آهن اسفنجی به روش میدرکس ۲۳
کمپرسور گاز خروجی و گاز سرد کننده به روش میدرکس ۲۴
سیستم تولید و مصرف گاز خنثی به روش میدرکس ۲۴
سیستم آبرسانی واحد میدرکس ۲۵
ویژگی گاز احیا کننده ، گاز خروجی و گاز سرد کننده یک واحد میدرکس ۲۷
موازنه انرژی و مواد در یک واحد میدرکس ۲۸
ویژگی های چند واحد میدرکس ۲۹
ویژگیهای واحدهای میدرکس مجتمع فولاد اهواز ۲۹
تولید آهن اسفنجی به روشهای اچ وای ال یک و دو ۳۰
کوره های تولید آهن اسفنجی به روش اچ وای ال یک و دو در دوره تخلیه آهن اسفنجی ۳۳
مراحل تولید آهن اسفنجی در واحد اچ وای ال یک و دو ۳۴
حرارت لازم برای تولید بخار آب در روش اچ وای ال ۳۷
میزان گاز لازم در روش اچ وای ال یک ودو ۳۷
تولید آهن اسفنجی به روش اچ وای ال سه ۳۸
احیای سنگ آهن به روش اچ وای ال سه ۳۸
بررسی کلی مطالب ۳۹
استاندارد AISI 39
استاندارد آلمانی DIN 42
فولادهای غیر آلیاژی ۴۲



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: بررسی، تولید، اسفنجی

آمار تولید جهانی شکر از 1980 تا 2005

سه‌شنبه 2 آذر 1395

آمار تولید جهانی شکر از 1980 تا 2005

در این پروژه تولید جهانی شکر از 1980 تا 2005 مورد بررسی قرار گرفته و میانه،فراوانی تجمعی،فراوانی نسبی،فراوانی تجمعی نسبی،fixi و نمودارهای آنها به دست آورده شده است.

اطلاعات به شرح زیر است:

سال زراعی

تولید جهانی شکر

سال زراعی

تولید جهانی شکر

1980/81

89

1993/94

111

1981/82

100

1994/95

116

1982/83

100

1995/96

125

1983/84

98

1996/97

124

1984/85

100

1997/98

128

1985/86

98

1998/99

134

1986/87

104

1999/00

134

1987/88

104

2000/01

131

1988/89

104

2001/02

138

1989/90

109

2002/03

149

1990/91

116

2003/04

144

1991/92

117

2004/05

149

1992/93

113



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: آمار، تولید، جهانی، 1980، 2005

تولید انرژی تجدید پذیر خورشیدی

یکشنبه 30 آبان 1395

تولید انرژی تجدید پذیر خورشیدی

مقدمه:

در حال حاضرتولید انرژی الکتریکی در دنیا به مقدار زیادی بر ذغال سنگ، نفت و گاز طبیعی تکیه دارد. سوخت های فسیلی تجدید ناپذیرند، آنها بر منابع محدودی که رفته رفته به پایان می رسند ، بنا شده اند.

در مقابل انرژیهای تجدید پذیر مانند باد و انرژی خورشیدی، پیوسته جایگزین می شود و هیچ گاه به پایان نمی رسند. اغلب انرژی های تجدید پذیر به دو صورت مستقیم یا غیر مستقیم از خورشید ناشی می شوند.

نور خورشید یا همان انرژی خورشیدی، می تواند برای گرم کردن و روشنایی خانه ها و سایر ساختمان ها، برای تولید الکتریسیته، برای آب گرم کردن، گرم کن های خورشیدی و انواع کاربردهای اقتصادی و صنعتی مستقیماً استفاده می شود.

همچنین گرمای خوشید موجب وزش باد می شود؛ همان انرژی ای که توسط توربین های بادی گرفته می شود؛ سپس بادها و گرمای خورشید باعث تبخیر آب می شوند. وقتی این بخار آب به باران یا برف تبدیل می شود و از سرازیرها به رودخانه ها و مسیرهای آب هدایت می شود، انرژی آن می تواند گرفته شده و از توان هیدرو الکتریکی آن استفاده شود.

همراه با باران و برف، نور خورشید باعث می شود گیاهان رشد کنند، ماده ای که آن گیاهان را می سازد، به عنوان توده زنده یا زیست توده می شناسیم.

بیومس می تواند به منظور تولید الکتریسیته، سوخت های حمل و نقل یا موارد شیمیایی استفاده شود. کاربرد بیومس برای هر یک از این اهداف، انرژی بیومس نامیده می شود.

هیدروژن نیز می تواند در بسیاری از ترکیبات اصلی، مثل آب، یافت شود. هیدروژن فراوان ترین عنصر روی زمین است، اما بصورت یک گاز طبیعی موجود نیست. هیدروژن همیشه با دیگر عناصر ترکیب شده است، مثل ترکیبش با اکسیژن برای ساخت آب. وقتی هیدروژن از عنصر ترکیبی اش جدا شود می تواند بعنوان سوخت مورد استفاده قرار گیرد.

تمام منابع انرژی تجدید پذیر از خورشید ناشی نمی شوند. انرژی زمین گرمایی دریچه گرمای درون زمین برای کاربردهای متنوع شامل: تولید توان الکتریکی و گرم و سرد کردن ساختمان هاست، و انرژی جزر و مد اقیانوس ها از نیروی کشش ماه و خورشید بر روی زمین ناشی می شود.

در حقیقت، انرژی اقیانوس از منابع متعددی ناشی می شود. علاوه بر انرژی جزر و مد، انرژی امواج اقیانوس بوسیله هر دو انرژی جزر و مد و باد، بوجود می آید. هم چنین خورشید بیش از آنکه عمق اقیانوس را گرم کند. سطح آنرا گرم می کند، ایجاد یک اختلاف دما می تواند بعنوان یک منبع انرژی بکار گرفته شود. تمامی اشکال انرژی اقیانوسی می تواند برای تولید الکتریسیته اعمال شود.

اهمیت انرژی تجدید پذیر به خاطر فواید آن است.

فایده های کلیدی آن عبارتند از:

فایده های محیطی: فن آوری های انرژی تجدید پذیر، منابعی پاک از انرژیهایی هستند که از صنایع انرژی های مرسوم، تماس و آلودگی محیطی بسیار کمتری دارند.

انرژی برای نسل های آینده ما: انرژی تجدید پذیر پایان نخواهد پذیرفت، هرگز. اما منابع دیگر انرژی محدودند و همین روزها ته می کشند.

مشاغل و اقتصاد: سرمایه گذاری ها بر روی انرژی تجدید پذیر اغلب صرف تهیه مواد خام (لوازم و کالا) و مصرفی و ساختاری برای ساخت و نگهداری وسایل می شود، تا سرمایه گذاری بر روی واردات پر خرج انرژی. این بدان معناست که پولی که شما بابت انرژی می پردازید، به جای اینکه وارد اقتصاد کشوری بیگانه شود، در کشور خودمان باقی مانده، اشتغال زایی کرده و موجب صرفه جویی اقتصادی در مصرف سوخت می شود.

1- فایده های محیطی:

فن آوری های انرژی قابل تجدید از صنایع انرژی مرسوم که بر سوخت فسیلی تکیه دارد، با محیط اطرافش بسیار دوستانه تر عمل می کند.

سوخت های فسیلی در بسیاری از مشکلات زیست محیطی که ما امروزه با آنها مواجه هستیم، سهم قابل توجهی دارند- گازهای گلخانه ای، آلودگی هوا و آلودگی آب و خاک- در صورتیکه متابع انرژی تجدید پذیر در این امر سهم بسیار اندکی داشته یا هیچ نقشی ندارند.

گازهای گلخانه ای، دی اکسید کربن، متان، اکسید نیتروژن، هیدروکربن ها و کلروفلوئورکربن ها، جو زمین را مثل یک پتوی گرم و شفاف احاطه کرده اند، به اشعه های گرم خورشید اجازه داخل شدن می دهند و گرما را در نزدیک سطح زمین به دام می اندازند (نگه می دارند).

اثرات این گلخانه طبیعی، دمای متوسط سطح زمین را حدود 60 درجه فارنهایت
(33 درجه سانتیگراد) نگه می دارد. اما افزایش مصرف سوخت های فسیلی، بطور قابل توجهی انتشار (تولید) گازهای گلخانه ای را زیاد کرده است، مخصوصاً دی اکسید کربن، به وجود آورنده افزایش اثر گازهای گلخانه ای که به عنوان گرمای محسوس و یکپارچه زمین شناخته می شود. مطابق نظر آژانس حفاظت محیط زیست ایالات متحده، سهم دی اکسید کربن عهده دار 2/1 تا 3/2 افزایش عمومی دماست.

با این وجود، فن آوری های انرژی قابل تجدیدپذیر، گرما و الکتریسیته را با انتشار (تولید) مقدار ناچیز یا صفر دی اکسید کربن، تولید می کند. هم چنین استفاده از انرژی سوخت های فسیلی، منبع مهمی برای آلودگی هوا، آب و خاک می باشد.

آلاینده ها نظیر منوکسید کربن، دی اکسید گوگرد، دی اکسید نیتروژن، ذرات معلق و سرب- باج غم انگیزی از محیط گرداگرد ما می گیرند!

به عبارت دیگر، اغلب فن آوری های انرژی قابل تجدید، آلودگی ناچیز یا صفر تولید می کنند.

آلودگی و گرمای زمین هر دو، احتمال حتمی خطر بزرگ سلامتی نسل بشر را مطرح می کنند.

مطابق با رای انجمن ریه (آمریکا) آلودگی هوا در امراض ریه، نظیر: تنگی نفس، سرطان ریه و عفونت های نواحی تنفسی، سهیم است و سالانه قریب به 335000 نفر در آمریکا به این علل فوت می کنند.

ضمناً ممکن است اثرات طولانی مدت مرتبط با گرمای زمین، مخرب تر نیز باشد. عوارض مرگ و میر با هوای بسیار گرم امکان دارد و هنگامی که دما بالا
می رود، امراض می توانند انرژی نهان قوی تری برای پیشرفت داشته باشند.

نهایتاً، فن آوری های انرژی قابل تجدید، می توانند به ما برای تغییر الگوهای مرسوم مصرف انرژی، برای ارتقاء کیفیت محیط پیرامون مان، کمک کنند.

2- انرژی برای نسل های آینده ما:

مصرف انرژی جهان، در آینده به کدام انرژی متمایل خواهد بود؟

بله، ما به خوبی می توانیم ثابت کنیم که مصرف الکتریسیته، رشدی جهانی خواهد داشت. آژانس بین المللی انرژی مطرح می کند که ظرفیت تولید الکتریسیته جهان تا سال 2020، تقریباً به 8/5 میلیون مگاوات، افزایش خواهد یافت. که حدود 3/3 میلیون مگاوات، بیش از سال 2000 است.

در این حال، ذخایر سوخت های فسیلی کره زمین منبع اصلی کنونی انرژی مان، طبق نظر بهترین تجزیه و تحلیل گران صنعت نفت، از سال ها 2020 الی 2060 شروع به اتمام رسیدن خواهند کرد.

ما چگونه احتیاجمان به آن مقدار انرژی را بر طرف خواهیم کرد؟

انرژی تجدید پذیر می تواند بهترین پاسخ ما باشد.

کمپانی بین المللی شل، پیش بینی می کند که در سال 2060، انرژی تجدید پذیر، 60% انرژی جهان را تأمین خواهد کرد.

بانک جهانی تضمین میکند که نرخ داد و ستد برای انرژی خورشیدی (الکتریسیته) طی 30 سال، به طور مقطوع به چهار تریلیون دلار خواهد رسید.

همچنین سوخت های بیومس (زیست توده ای) می توانند جانشین گازوئیل شوند. و بر عکس سوخت های فسیلی، منابع انرژی تجدید پذیر، قابل نگهداری می باشند و هیچ وقت تمام نمی شوند عملکرد امروز ما برای مرسوم نمودن فن آوری های انرژی قابل تجدید، نه تنها به نفع حال ماست، بلکه موجب تولید منافع زیادی نیز خواهد شد.

3- شغل ها و اقتصاد:

قشر گسترده ای از ایالات متحده مجبور به واردات سوخت های فسیلی مانند نفت و گاز طبیعی، برای تولید برق، گرما و سوخت، هستند. هزینه این سوخت های فسیلی می تواند بالغ بر میلیون ها دلار شود و هر دلاری که صرف واردات انرژی شود، یک دلار از اقتصاد محلی کسر می شود.

در این حال، منابع انرژی تجدید پذیر، بطور موضعی (محلی) گسترش یافته، هزینه صرف شده برای انرژی از کشور خارج نمی شود، اشتغال زایی نموده و موجب تقویت اقتصاد می شود. کسر فن آوری های انرژی قابل تجدید، زحمتی سخت می طلبد.

شغل ها به زودی از ساخت و ساز، طراحی، نصب، سرویس و فروش محصولات انرژی تجدید پذیر، به پایان می رسند.

اشتغال هم چنین بطور غیر مستقیم از شغل هایی که کمپانی های انرژی تجدید پذیر را با مواد خام، حمل و نقل، اسباب و لوازم و خدمات تخصصی نظیر محاسبات و خدمات اداری تغذیه می کنند، فراهم خواهد شد.

در نتیجه، دستمزد و حقوق حاصل از شغل هابر درآمد افزوده در اقتصاد محل را موجب می شود. از این گذشته درآمد حاصل از انرژی تجدید پذیر، چیزی بیشتر ازاین اقتصاد محلی را رشد می دهد، یعنی مزایایی برای کل کشور.

بطور مثال در سال 2001، ایالات متحده حدود 103 بیلیون دلار صرف واردات نفت از خارج کرده است. اما به عنوان یکی از سازندگان بزرگ سیستم های انرژی قابل تجدید جهان، می تواند با افزایش مصرف انرژی تجدید پذیر در سراسر دنیا، سرمایه بیشتری را به کشورش وارد کند. در حال حاضر سازندگان سیستم های فتوولتایی ایالات متحده حدود 3/2 کل سازندگان جهان هستند. و حدود 10% صادرات این سیستم های PV بیشتر صرف توسعه شده که منجر به فروش سالیانه بیش از 300 میلیون دلار می شود.

چرا بهینه سازی انرژی اهمیت دارد؟

بهینه سازی یعنی انرژی کمتری برای انجام یک عمل واحد، صرف کنیم. بهینه سازی مصرف انرژی در کشور، در صرف پول کمتر برای انرژی توسط صاحبان مسکن، مدارس، ادارات دولتی، کارخانه ها و صنایع است. پولی که باید صرف انرژی شود، در عوض می تواند صرف مایحتاج مصرف کنندگان، تحصیلات، خدمات و تولیدات شود. یک اقتصاد بهینه انرژی، می تواند بدون مصرف انرژی اضافی، رشد کند. اقتصادی که کمتر انرژی مصرف کند، کمتر هم آلودگی تولید
کند، چون این دو (مصرف انرژی و آلودگی) بدقت به هم گره خورده اند.

- برای منازل: برای خانه یا مشاغل کوچک و برای سایر ساختارها(کارآیی)یا بهینه سازی انرژی، مصرف کمتر انرژی برای گرم کردن، سرد کردن و روشنایی ساختمان معنا میدهد. و هم چنین خرید وسایل کم مصرف از قبیل کامپیوترها و سایر لوازم منزل می باشد. برای مالکان خانه و صاحبان مشاغل، مصرف کمتر انرژی، ذخیره مالی محسوب می شود.

- برای ماشین ها: برای ماشین شما و دیگر وسایل نقلیه، بهینه سازی انرژی به معنای ساخت ترن های جدید و دیگر تکنولوژی های وسایل نقلیه است.

ماشین های مجهز به موتورهای دو گانه (دو سوختی) بنزین – الکتریکی یا مجهز به سلول های سوختی، دو مثال از بهینه نمودن انرژی در وسایل نقلیه است.

- برای شرکت های برق: برای شرکت برق و سایر تهیه کنندگان الکتریسیته (برق) بهینه سازی انرژی، اغلب بدن معناست که به مشتریان شان کمک کنند تا انرژی را در خانه ها و مغازه هایشان ذخیره کنند. البته هم چنین به معنای رساندن و ذخیره موثرتر و بهتر برق نیز هست.

- برای صنایع محلی: برای صنایع محلی (صنایع محدود و کوچک)، بهینه سازی انرژی به معنای یافتن راه کارهائی است که کار یکسانی را با انرژی کمتر، انجام دهند. مثلاً ریخته گری پیوسته، در صنایع فولاد، پیشرفتی در راه کارآیی (بهینه نمودن) انرژی است. بهینه سازی انرژی هم چنین به معنای استفاده بهتر از موتورها، سیستم های بخار، سیستم های فشرده سازی هوا و سایر ابزار و وسایل صنعتی می باشد.

مدل خورشیدی:

خورشید مبدأ نهایی بیشترین انرژیی است که اکنون برای زمین وجود دارد. این انرژی شامل انرژی برای گرمایش مستقیم، انرژی باد، نیروی هیدروالکتریک و انرژی حاصل از سوخت های فسیلی است. سوخت های فسیلی که در حال حاضر وجود دارند نتیجه فرایند فتوسنتز هستند. فرایندی که طی آن، گیاهان انرژی خورشیدی را به انرژی شیمیایی، تبدیل می کنند. درک کامل تکنولوژی انرژی خورشید تنها از طریق تجزیه و تحلیل کامل از تابش خورشید میسر است.

خورشید، نزدیکترین ستاره به ما، برای بقاء حیات بر روی کره زمین انرژی تولید می کند و برای اینکه سیاره ما، در مداری تقریبا مدور باقی بماند، کشش گرانش مورد نیاز را ایجاد می کند.خورشید دارای جرم kg 30 10×99/1 = M (تقریباً 5 10×3/3 برابر جرم زمین) و شعاع m 8 10×96/6 = R (تقریباً معادل 109 برابر شعاع زمین) است. فاصله بین زمین و خورشید از 0167/1 واحد نجومی (در نقطه بعید خورشیدی، تقریباً 13 تیر ماه) تا 983/0 واحد نجومی است (یک واحد نجومی تقریباً برابر
11 10× 5/1 متر است).

قسمت درونی خورشید در دسترس ما نیست تا آزمایشات مستقیم بر روی آن انجام دهیم، ولی بر اساس مشاهداتی که از سطح خورشید صورت گرفته و بررسی های نظری، ستاره شناسان معتقدند که دمای درونی آن حدود 15 میلیون درجه کلوین است، ترکیب شیمیایی خورشید به طور عمده هیدروژن و مقدار کمتری هیلیوم است. این دو عنصر شیمیایی که 96 تا 99 درصد جرم خورشید را تشکیل می دهند تحت فشار شدیدی قرار دارند و تنها کشش گرانش زیاد خورشید این توده را در کنار یکدیگر نگه می دارد انرژی در درون خورشید از طریق همجوشی هسته ای هیدروژن به هلیوم تولید می شود.

این انرژی راه خود را به سطح خورشید می گشاید و سرانجام عمدتا به شکل تابش الکترومغناطیسی در فضا منتشر می شود. سطح خورشید یا فوتوسفر در واقع ناحیه انتقالی است که در آن چگالی به سرعت تقلیل می یابد. با عبور دادن خورشید به قسمت خارجی فوتوسفر از یک محیط که از لحاظ نوری به محیط نسبتاً شفاف می رسیم. علاوه بر این، دما نیز به حدود 6000 درجه کلوین تنزل می یابد. در بالای فوتوسفر جو خورشید قرار دارد که کروموسفر نام دارد زیرا به انتخاب رنگ های بخصوصی از تابش رسیده ازفوتوسفررا جذب می کند چون این لایه نسبتاً شفاف است، اثر آن را بر روی تابش خورشیدی تابیده می شود و نادیده می گیریم.

بیشتر تابش که به ما می رسد از فوتوسفر گسیل می شود و از این رو طیف خورشیدی به وسیله- خواص نوری و حرارتی سطح خورشید مشخص می شود. در مدل ساده ای که در اینجا به کار رفته است فرض می شود که خورشید همچون جسمی سیاه رفتار می کند که سطح آن k ْ 6000 T ثابت نگه داشته شده است. این دمای سطحی توسط یک منبع انرژی که در داخل خورشید قرار دارد ثابت نگه داشته می شود به دلیل این دمای بالا، سطح خورشید نور افشانی می کند و تابش الکترومغناطیسی در تمام جهات فضا منتشر می کند (شکل 1-3).

شکل 1-3- مدل ساده خورشید

تابش جسم سیاه: تابش الکترو مغناطیسی از امواج میدان های الکتریکی و مغناطیسی نوسان کننده تشکیل می یابد. هر موج با طول موج و فرکانس v مشخص می شود. در خلأ همه امواج با سرعت یکسانی برابر 8 10×9979/2 = C متر در ثانیه حرکت می کنند. فرکانس، طول موج وسرعت vهر موج طبق رابطه روبروبه یکدیگر مربوطند: v= C

مقدار انرژی خورشید موجود در سطح زمین تا اندازه قابل ملاحظه ای کمتر از مقدار انرژیی است که به بالای جو زمین می رسد. میزان کاهش انرژی خورشید به هنگام ورود به سطح زمین اساساً از روی حالت نوری جو زمین تعیین می شود. همانطور که بعداً خواهیم دید، اجزای ترکیبی جو توسط دو فرآیند بر تابش خورشیدی اثر می گذارند، فرایند جذب و پراکندگی، مقدار جذب و پراکندگی که در یک مولفه معین طیف خورشیدی رخ می دهد به ترکیب جو و نیز به طول موج آن مولفه بستگی دارد. در نواحی معینی از طیف، انرژی خورشید عمدتاً پراکنده می شود، در حالی که در سایر نواحی قسمت اعظم آن جذب می شود. بنابراین ترکیب طیفی آفتاب گیری در سطح زمین به نحو چشمگیری با ویژگی منحنی جسم سیاه 5760 کلوینی ثابت خورشیدی تفاوت دارد. این مسئله نیز حائز اهمیت است که آفتاب گیری در سطح زمین را پیش از این نمی توان با یک پرتو تک جهتی معادل دانست. این مطلب در مورد تابش رسیده به بالای جو صادق بود. مقداری از تابش های پراکنده توسط جو به شکل تابش پخشی به زمین می رسد. تابش پخشی مولفه هایی است که در جهات مختلف سیر می کنند از این رو، کل تابش خورشیدی در سطح زمین شامل یک مولفه مستقیم با تک جهتی است که پراکندگی جوی پدید می آید (شکل 5-1) از نظر کمی برای اینکه نحوه تغییر و تبدیل انرژی خورشیدی پس از عبور از جو را در یابیم، برخی از مبانی فیزیک جوی را ارائه می کنیم.

یک مدل جوی:

حالت جوی را می توان تا اندازه ای با متغییرهای ترمودینامیکی همچون دما T، چگالی P، فشار P و ترکیب شیمیایی تشخیص داد این پارامترها بر حسب موقعیت فضایی و زمانی در جو تغییر می کند. چون این تغییر نسبتاً غیر قابل پیش بینی است. بسیار مشکل است درباره آفتاب گیری در سطح زمین برآوردهایی نظری ارائه کنیم. برای این که چند نتیجه نظری بدست آوریم لازم است چند تعریف ساده کننده در مورد ساختار جوی به عمل آوریم. ابتدا فرض می کنیم جو در مقایسه با شعاع زمین به حدی نازک باشد که بتوان آن را مسطح دانست. همان طور که خواهیم دید، ارتفاع موثر جو تقریباً 8 کیلومتر است که در آن مقایسه با شعاع زمین (km 6371 = R) بسیار اندک است. بنابراین تقریب مناسبی است مگر احتمالاً در حوالی طلوع و غروب خورشید که آفتاب گیری در سطح زمین آنقدر کم است که قابل چشم پوشی است. از این رو انحنای جو در اکثر کاربردهای انرژی خورشیدی اهمیت اندکی دارد.

در دومین تقریبی که در اینجا به کار رفته چنین فرض می شود که پارامترهای جوی فقط با یک مشخصه، یعنی ارتفاع Z تغییر می کند. یعنی می توان تمام پارامترهای جوی را بر حسب پروفیل های عمودی مانند P=P(Z) ، T=T(Z) و P=P(Z) نمایش داد. صحت این تقریب به اثبات نرسیده، خصوصا هنگامی که ابرهای پراکنده ای در آسمان وجود داشته باشد. جو کم ضخامتی را که ترکیب آن صرفاً با ارتفاع تغییر می کند. جو لایه لایه می نامند.

جذب و پراکندگی تابش خورشیدی توسط اجزای سازنده جو:

اجزای تشکیل دهنده جو، خواه مولکول هایی مانند: n2 ، o2 ، Co2 و H2o خواه ازن و ذرات بزرگتری چون قطرات ریز مه، دوده یا گرد و غبار می توانند توسط فرآیند جذب یا پراکندگی بر تابش اثر بگذارند. در فرایند جذب، انرژی تابیده به شکل دیگری از انرژی که معمولاً حرارت است تبدیل می شود. بخشی از کسر جذب شده تا حدی با سطح مقطع جذب جرمی ، آن جزء تعیین می شود. این پارامتر از یک مولکول تا مولکول دیگر فرق می کند و به طول موج تابش رسیده نیز بستگی دارد همان طور که خواهیم دید، مولکول های n2 ، o2 به نحو قابل ملاحظه ای در طیف خورشیدی جذب نمی شوند، از سوی دیگر Co2 و H2o در گستره های منتخبی از ناحیه مادون قرمز طیف خورشیدی به مقدار زیاد جذب می شوند. این نواحی رانوارهای جذبی مشخص می نامند (شکل1-5)

فهرست مطالب

فصل اول ۱
انرژی تجدید پذیر چیست؟ ۱
فایده های کلیدی آن عبارتند از: ۴
۱- فایده های محیطی: ۴
۲- انرژی برای نسل های آینده ما: ۶
۳- شغل ها و اقتصاد: ۸
انرژی نو: ۱۱
جایگاه انرژی خورشیدی در تأمین الکتریسیته ۱۱
ماژول های خورشیدی ۱۶
باطری ۱۷
شارژ کنترولر ۱۷
برآورد هزینه تأمین الکتریسیته خورشیدی (فتوولتائیک) ۱۸
طبقه بندی سیستم های خورشیدی ۲۱
سیستم های فتوبیولوژی ۲۱
سیستم های شیمیایی خورشیدی ۲۲
سیستم های فتوولتائیک ۲۲
عملکرد سلول های خورشیدی ۲۳
سیستم های حرارتی ۲۶
گردآورنده های خورشیدی تخت ۲۶
بررسی اقتصادی سیستم های گرمایش خورشیدی ۲۸
سرمایه گذاری: ۲۹
هزینه اولیه: ۳۰
سیاست توسعه سیستم های گرما خورشیدی ۳۹
کمک های اقتصادی: ۳۹
تحقیق، توسعه و نمایش کارکرد سیستم ها: ۴۰
فنی: ۴۲
اقتصادی: ۴۲
آموزش/ اجتماعی – فرهنگی: ۴۲
فصل دوم ۴۳
موقعیت فعلی و آینده انرژی طبیعی ۴۳
۱- علوم نجومی: ۴۴
۲- علوم محیطی: ۴۵
۳- علوم شیمیایی: ۴۶
فصل سوم: ۴۸
ثابت خورشیدی ۴۸
مدل خورشیدی: ۴۹
ترکیب طیفی ثابت خورشیدی: ۶۵
فصل چهارم: ۶۹
سیستم های حرارتی خورشید ۶۹
سمت گیری رشته پانل ها: ۷۰
اندازه رشته پانل ها: ۷۲
رشته های سری و موازی: ۷۳
تلفات لوله: ۷۵
مبدل های حرارتی: ۷۶
ذخیره سازی: ۸۰
سرد کننده های تابشی: ۹۳
فصل پنجم: ۹۶
آفتاب گیری در سطح زمین ۹۶
یک مدل جوی: ۹۸
جذب و پراکندگی تابش خورشیدی توسط اجزای سازنده جو: ۹۹
تابش مستقیم خورشید: ۱۰۱
شار پخشی: ۱۰۸
معادلات تقریبی برای شار خورشیدی کل: ۱۱۲
اندازه گیری آفتاب گیری در سطح زمین: ۱۱۵
شار حرارتی جو: ۱۱۸
فصل ششم: ۱۲۳
تبدیل مستقیم انرژی خورشیدی به کار – دستگاه های فتوولتایی ۱۲۳
نیمه هادیهای ذاتی ( خالص) : ۱۲۹
نیمه هادیهای غیر ذاتی ( نا خالص شده ): ۱۳۵
پیوند p-n : ۱۳۷
دستگاههای فتوولتایی پیوندی : ۱۳۸
پاسخ دهی طیفی جریان فوتونی: ۱۴۲
ساخت وسایل فتوو لتایی سیلسیومی : ۱۴۸
برآورد هزینه تولید برق: ۱۵۰
نتیجه گیری : ۱۵۳



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

دانلود تحقیق نقش تولید علم در توسعه یافتگی جوامع، موانع و راهکارهای تولید علمی در گروه پزشکی ایران

شنبه 29 آبان 1395

دانلود تحقیق نقش تولید علم در توسعه یافتگی جوامع، موانع و راهکارهای تولید علمی در گروه پزشکی ایران


خلاصه

افزایش دسترسی به آموزش عالی و حرکت به سوی همگانی کردن آن از پیش شرطهای اساسی توسعه علوم و فناوری در کشور است. با بررسی افزایش تقاضا برای بهره‌مندی از آموزش عالی در علوم پزشکی، موانع اصلی تحقق آن را می‌توان در علل ذیل عنوان نمود:

1- عدم گسترش مناسب دانشگاهها در جهان و بخصوص در ایران.

2- پیدایش رشته های نوظهور و تنوع رشته ها.

3- کاستی بودجه دانشگاهها که تا حدی زمینه رقابت مندی را در امر پژوهش تضعیف نموده و باعث فرار مغزها می گردد.

4- نحوه پذیرش نامناسب دانشجو

5- ضعف سیستم مدیریتی و عدم کاربرد مدیریت های جدید مانند مشارکتی- راهبردی و غیره.

6- عدم انتخاب و گزینش افراد با علاقه در این رشته ها که خود باعث آسیب جبران ناپذیر به خود دانشجویان از نظر بخصوص اختلالات روانی و افسردگی و به جامعه مصرف کننده بهداشتی- درمانی می شود.

7- جدایی از فرایند توسعه ملی و عدم شفاف سازی.

8- خصوصی سازی غیر نهادینه.

راهکارهای مهمی که طی تحقیقات بعمل آمده می توان طرح نمود شامل:

1- توجه مجدد به ساختار نظام آموزش عالی در جهت طرح توسعه نظام علمی کشور.

2- لزوم همکارهای علمی بین‌المللی در راستای توسعه علمی.

3- پیدایی دانشگاههای نوظهور و ایجاد مفهوم جامعه یادگیرند.

4- استفاده از مدیریت راهبردی- مشارکتی و غیره.

5- آینده اندیشی بعبارتی در نظر گرفتن اولویتهای 15 گانه گروه هزاره دانشگاه سازمان ملل متحد در تحقیقات و برنامه ریزی در پیشگیری جامعه از ابتلاء به آن معضلات.

6- لزوم تغییرات اساسی و طراحی برنامه های راهبردی در تولید علم و ارتباط با فن آوریهای جدید.

7- انتخاب بهترین دانشجویان با استفاده از آزمونهای شخصیت و تستهای رغبت سنجی.

8- ضرورت استانداردسازی و ایجاد شبکه و نرم افزارهای مناسب بین دانشگاهی و مراکز بهداشتی- درمانی.

9- استفاده از روش تفکر انتقادی در مدرسین و دانشجویان جهت تولید علم و ایجاد روشهای جدید پیشگیری- در کنترل و درمان بیماریها در جامعه.

لذا در نتیجه گیری نگارنده تصریح می کند که با ارائه این نقطه نظر به شورای برنامه ریزی و آموزش عالی تغییر در روند محتوی و طراحی برنامه ها بعمل آید. در ضمن در ساختار دانشگاههای غیر انتفاعی مانند دانشگاه آزاد نیز در نحوه پذیرش دانشجو علاوه بر استفاده از سیستم حضوری و چهره به چهره، روش نیمه حضوری نیز امکاناتش فراهم گردد و با ایجاد گروههای آموزشی برنامه ریزی نرم افزاری و مولتی مدیا زمینه ایجاد ارتباط بیشتر با سایر مراکز بعمل آمده و علاوه بر تولید علم، به ارتقاء کیفی خدمات در بخش اشتغال دانش آموختگان نیز پرداخته شود. همچنین به فراگیری نیازهای بهداشتی درمانی، راهبردهای جدید به مراکز بهداشتی- درمانی و سایر مراکز مانند آموزش و پرورش، کارخانجات، زندانها مراکز خدماتی فراهم گردد که باعث افزایش بودجه دانشگاه در این زمینه نیز گردد.

چکیده

افزایش دسترسی به آموزش عالی و حرکت به سوی همگانی کردن آن، از پیش شرطهای اساسی توسعه علوم و فناوری در کشور است. در این مقاله سع شده است با بررسی افزایش تقاضا برای بهره مندی از آموزش عالی در علوم پزشکی، تبیین مفهوم همکاریهای علمی بین‌المللی و بررسی تاثیر آن بر توسعه علمی، موانع اصلی تحقق آن در ایران مورد بررسی قرار گرفته و سپس راهکاریهایی برای رفع این موانع و ارتقای سطح علمی ارائه گردد.

کلید واژگان: تولید علم، موانع، راهکارهای توسعه علمی، عصر اطلاعات فناوری.

مقدمه

ضرورت تولید علم و همگانی کردن آن، از پیش شرطهای اساسی برنامه اولویتهای ملی توسعه علوم و فناوری در کشور است. دوره ای که آموزش عالی، عمدتاً نخبه‌گرا بود و به طبقات متوسط و حداکثر برخی لایه های مجاور و پیرامونی آن اختصاص داشت، سپری شده است. آموزش عالی در جهان امروز، از دهه های پایانی قرن بیستم، روبه همگانی شدن گذاشته و بصورت تقاضای اجتماعی در آمده است. بویژه که با ظهور عصر اطلاعات، نیاز به دانش و علم بیش از هر وقت دیگر در گذشته، جنبه حیاتی به خود گرفته است. به سخن دیگر این تحولات ساختاری موجب دانشبر شدن زندگی[1] شده است، زندگی در ابعادی بسیار عمیقتر و گسترده تر از پیش به دانش و اطلاعات متکی شده است. مفهوم کسب و کار نیز بر اثر این تغییر ساختاری، عمیقاً دگرگون شده است. کاریدی در برابر کار فکری بیش از بیش، کم ارزش شده و مفاهیمی همچون «کارمند دانش»[2] یا کارگر مغزی[3] به میان آمده است. سازمانهای کار و خدمات نی، الگوی سازمان یادگیرنده[4] را پیش رو دارند. هر یک از کارکنان این سازمانها نه تنها باید در شغل خود بلکه درباره شغلهای همجوار و همه فرایندهای کار، مدیریت و محیط کار، بصورت مداوم اطلاعات تازه‌ای به دست آورند تا بتوانند در چرخه‌های کاری، حضور موثر داشته باشند (15).

شاید بتوان گفت تا سالهای آغازین دهه 1980 میلادی دانشگاهها عمدتاً سنتی بوده‌اند. (1980 و Litten)

از دهه 1980 میلادی دانشگاهها دچار مشکلات عدیده شدند، تقاضای فزاینده برای رشته ها و درسهای منفرد دانشگاهی، ناتوانی دولتها در تأمین بودجه سنگین آموزش عالی، فشار ناشی از رقابت جهانی در عرصه های عقیق و توسعه، ضرورت تطابق فعالیتهای آموزشی دانشگاه با بازار کار از آن جمله است.

تحولات اجتماعی و فناوری در دو دهه پایانی سده بیستم میلادی سبب توجه بسیار افزونتر به گسترش دانشگاهها در کشورهای پیشرفته صنعتی شده است. برای نمونه تعداد دانشجویان ثبت نام شده در دانشگاههای اتریش بین سالهای 1980 تا 1995 میلادی به دو برابر رسیده است (1999 و Sporn). این نمود به “مردمی شدن”[5]دانشگاه معروف شده است، که در نقطه مقابل نخبه گرایی دانشگاههای سنتی است. افزایش تقاضا خود ناشی از عواملذ عدیده بوده است.

برای نمونه تا سال 2005 شرکتهای امریکایی افزون بر 15 میلیارد دلار برای آموزش کارکنان خود هزینه می کنند (17). این تقاضاها ایجاب می کند تا دانشگاهها به گسترش مناسب و همگام با افزایش تقاضا بپردازند.

همانطور که در ایران نیز به این موج فزاینده افزایش تقاضا حدود یک میلیون و چهارصد هزار نفر جهت شرکت در آزمون سراسری امسال مواجه بوده ایم. در حالی که پذیرش کل دانشگاهها اگر آموزش عالی حدود 600 هزار نفر است.

2-1- پیدایش رشته های نوظهور و تنوع رشته ها:

در سه دهه پایانی سده بیستم میلادی، رشته های نوظهوری پدیدار شده است. این رشته‌ها بر اثر توسعه علم و فناوری بوجود آمده است.

تعداد درخور توجهی از این رشته ها، میان رشته ای هستند. برای نمونه ضرورتهای نظری و عملی سبب شده تا رشته مکاترونیک از تلفیق در رشته مکانیک و الکترونیک ایجاد شود. یا رشته های مهندسی پزشکی و… تعداد این رشته ها افزون بر 2500 مورد ذکر شده است. پیدایش این رشته ها و تقاضای تحصیل دانشگاهی برای آن، موجب فشار شدید بر دانشگاههای مرسوم شده است. پیدایش این رشته ها و تقاضای تحصیل دانشگاهی برای آن، موجب فشار شدید بر دانشگاههای مرسوم شده است. و از نظر تنوع رشته ها نیز می توان گفت، در طی سالها دانشجویان عمدتاص منحصر به خواستاران تمام وقت دانش بوده اند.

این معنا در دو دهه اخیر دچار تحول چشمگیر شده است. برای نمونه بسیاری از شاغلان در مورد روز آمد بودن خود احساس نگرانی می کنند. این دسته تلاش می‌کنند به طریقی کاستیهای خود را جبران کنند. البته سازمانها و شرکتها معمولاً به کارآموزی می‌پردازند و حتی برای آخرین سال پیش از بازنشستگی کارکنان برنامه دارند به مزاج کارآموزی در آخرین سال کاری را «کارآموزی بیش از تدفین»[6] می گویند. با این همه ضرورت دارد که تعریف سنتی از دانشجو نیز تحول یابد.

همچنین لازم است دانشگاها برای گروههای مختلف دانشجویان برنامه ریزی کنند. برآوردن تقاضاهای گسترده و تخصصی دانشجویان گروه پزشکی از این جمله و بسا پر اهمیت تر می باشد زیرا تمرکز اصلی آنان بر روی انسانها و جامعه تاثیر مستقیم و بسزایی دارد.

3-1- کاستی بودجه دانشگاهها:

یکی از موضوعهای عمده و موانع بخصوص در گروه پزشکی عدم تکافوی درآمدها برای هزینه هاست. لذا کاستی بودجه با ضرورت توسعه بخشی و تنوع دهی دانشگاهها موجب بروز مشکلات مضاعف می شود. (7)

بخصوص در گروه پزشکی طی سالیان اخیر بدلیل عدم ارتباط مستقیم تولید علمی با رضایت مصرف کننده و سایر عوامل کیفیتی و تضمین تولید مانند واگذاری بیمارستانهای دولتی- یا طرح خود کفایی- یا طرح واگذاری به بخش خصوصی و غیره که خود نشانده عدم کارآیی این سیستم ها می باشد. سیستم های بهداشتی- درمانی بالطبع آن آموزشی را با مشکلات عدیده ای روبرو ساخته است.

از طرفی در کشورهای در حال توسعه کمبود منابع بیشتری بچشم می خورد. متقاضیان دانشگاه فاقد توانایی مالی هستند و سازمان حمایت کننده با توانایی مالی اندک است. (7)






خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

مقاله درمورد تولید مثل جنسی در جانوران

شنبه 29 آبان 1395

مقاله درمورد تولید مثل جنسی در جانوران



تولید مثل جنسی در جانوران

جانوارن هم، برای تولید مثل، به سلول های نر و ماده نیاز دارند. گامت نر اسپرم و گامت ماده تخمک نام دارد که در اندام های تولید مثلی نر و ماده به وجود می آیند در همه مهره داران و بعضی از بی مهره ها، جانور نر و ماده از هم جدا هستند. اما در بعضی بی مهره‌ها از قبیل اسفنج‌ها، مرجان‌ها، بعضی از کرم‌ها و نرم تنان، مانند گیاهان، اندام تولید مثل نر وم اده در بدن یک فرد است ( نر- ماده اند). جانوران گرچه در تولید مثل جنسی روش های مختلفی دارند ولی دو ویژگی مشترک در این روش ها وجود دارد که در قالب شرایط گوناگون ساختار بدنی و محیطی آن‌ها به شکل‌های مختلفی بروز میکند.

الف – ایجاد امکان لقاح: گامت ها باید با یکدیگر برخورد کنند تا بتوانند ترکیب شوند و سلول تخم را ایجاد نمایند. گر چه اغلب، گامت نر- بر خلاف گامت ماده – متحرک است اما معمولاً برای برخورد با هم به شرایط محیطی وابسته اند، بنابراین، برای انجام لقاح شرایط مکانی و زمانی خاصی لازم است.

از نظر شرایط مکانی، لقاح ممکن است در بیرون بدن جاندار صورت بگیرد ( مانند بسیاری از بی مهره گان، ماهی ها و دوزیستان) یا آن که در داخل بدن باشد ( مانند خزندگان، پرندگان و پستانداران و بسیاری از گیاهان) در حالت اول آن را لقاح خارجی و در صورت دوم، آن را لقاح داخلی گویند.

از نظر شرایط زمانی، تولید گامت ها و نیز رها شدن آنها به منظور ترکیب با یکدیگر باید تقریباً در یک موقع و در زمان مناسب باشد تا امکان برخورد مؤثر گامت ها فراهم شود. این زمان مناسب، در برخی جانوران مثل پستانداران و پرندگان، دوره‌ی جنسی نام دارد.

بحث کنید

در لقاح خارجی، گامت ها در محیط زندگی جاندار – که معمولاً آب است – رها می شوند. البته در لقاح داخلی نیز باید محیط مناسب برای زنده ماندن گامت ها تا هنگام لقاح، فراهم شود.

1- گامت هایی که لقاح خارجی دارند، باید چه ویژگی‌هایی داشته باشند؟

2- چرا لقاح خارجی روش مطمئنی برای تولید جاندار جدید نیست؟

3- جرا برای والدین، لقاح خارجی، روش متکی بر صرفه جوی ماده و انرژی نیست؟

4- مزایای لقاح بر لقاح خارجی چیست؟

5- چرا حتی در لقاح داخلی تعداد گامت های نر بسیار بیش تر از گامت های ماده است؟

ب- ایجاد امکان رشد تخت تا ایجاد نوزاد: برای آن که تولید مثل موفق باشد باید شرایط‌ی تغذیه و حفاظت از جنین فراهم شده باشد. در جانورانی که جنین داخل«رحم» درون شکم مادر پرورش می‌یابد، این شرایط به بهترین صورت وجود دارد. جنین از طریق اندامی به نام « جفت» که به وسیله‌ی « بند ناف» به جنین متصل است با خون مادر ارتباط دارد و مواد لازم را از آن دریافت می کند و مواد زاید را به آن می دهد.

در جانوران تخم گذار، جنین از نظر تغذیه به اندوخته‌ی غذایی داخل تخم وابسته بوده و از نظر حفاظت با توجه به نوع جانور، به پوسته‌ی سخت یا قابل انعطاف تخم متکی است.

تولید مثل در آدمی

تولید مثل در انسان نیز مانند پستانداران دیگر با تشکیل سلول های جنسی نر و ماده و ترکیب هسته های آنها با یکدیگر و ایجاد سلول تخم صورت می گیرد. در انسان،‌ گامت‌ها توسط غدد جنسی تولید می شوند. شما با غدد جنسی به عنوان غدد مولد هورمون های جنسی آشنا شدید اما آنها، گامت نر (اسپرم) و گامت ماده ( تخمک) نیز تولید می کنند



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

مقاله بررسی نحوه تولید و سم‌زدایی آفلاترکیسن

شنبه 29 آبان 1395

مقاله بررسی نحوه تولید و سم‌زدایی آفلاترکیسن


مقدمه

آفلاتوکسین‌ها گروهی از مایکوتوکسین‌ها با قدرت سرطان‌زایی، جهش‌زایی و کاهش کارآیی سیستم ایمنی، می‌باشند (Eatan &Gallagher , 1294; IARC , 1993) آنها از متابولیت‌های ثانویه سنتز شده توسط سویه های سم‌زای ASpergillus flavus , Aspergillus parasiticvs و Aspergillus nomius می‌باشند. آفلاتوکسین B1 با توجه به پتانسیل بالاتری که دارد، بیشتر مورد توجه قرار دارد. رشد قارچهای مولد سم وآلوده شدن به آفلاتوکسین در بسیاری از محصولات غذایی دیده می‌شود (Wood , 1989). در صورت مصرف غذاهای آلوده به سموم آفلاتوکسین B و B2، این سموم به‌آفلاتوکسین‌های M1 و M2 متابولیزه می‌شوند و به درون بافت‌هاومایعات بیولوژیکی و شیر حیوانات شیرده ترشح می‌شوند (Zarba etal , 1992).

سویه‌های گونه‌های Bifidiobacterium , Lactobacillus , Lactococcus در تولید محصولات شیری تخمیری به عنوان استارتر کالچر و تولید کننده طعم و بو، به کار می‌روند نقش اصلی این کشت‌ها تولید اسیدهای آلی مثل اسیدلاکتیک در طی مراحل تخمیر است که سبب افزایش عمر قفسه‌ای محصولات می‌شود و هم محتویات حساس آنها را تغییر می‌دهد.

اگر شیر به آفلاتوکسین‌ آلوده باشد، احتمال تخریب مرحله تخمیر و تولید ترکیباتی با بوی تغییر یافته و ناخواسته را در محصول ایجاد می‌کند (Sutic & Banina , 1990).

اخیراً EL – Nezami و همکارانش (1996 , 1998) گزارشاتی ارائه داده‌اند مبنی بر وجود سویه‌های خاص لاکتوباسیل‌ که توانسته‌اند آفلاتوکسین‌ها را از محلول آبی جداکنند. به علاوه سویه‌های خاصی از باکتری‌های اسید لاکتیک، توانسته‌اند آفلاتوکسین M1 را از شیر آلوده هم جداکنند (Pierides etal . ;2000). جداسازی آفلاتوکسین در نتیجه اتصال فیزیکی سم به دیواره سلولی یا ترکیبات دیواره سلولی است (Haskard et al. 2000 ; EL- Nezami et al. 1998 b).

همچنین جداسازی بعضی متابولیت‌های ضدقارچی مثل دی‌پپتیهدهای حلقوی و فنیل‌لاکتیک اسید و اسیدهای چرب هیدورکسیله شده از باکتری‌های اسیدلاکتیک، توانایی این گونه‌ها در بازدارندگی رشد قارچ‌های فاسد کننده مواد غذایی و مواد سم‌آفلاتوکسین را نشان می‌دهد.

آفلاتوکسین در ذرت

متابولیتهای سمی تولید شده توسط قارچها، که به عنوان مایکوتوکسین شناخته می‌شوند، در طی چند سال اخیر بسیار مورد توجه واقع شده‌اند. مایکوتوکسین‌ها امروزه به عنوان تهدید کننده‌های سلامتی در حیوانات شناخته شده‌اند که بیماری‌هایی مثل equine leukoencephalo malaci در اسب‌ها و Porcine edema را در خوک‌ها ایجاد می‌کنند. کاهش وزن، کاهش باروری و کاهش مقاومت در برابر بیماریها و حتی مرگ را به مایکوتوکسین نسبت داده‌اند. هیچ حیوانی نسبت به آنها مقاوم نیست ولی به طور کلی حیوانات پیرتر مقاوم‌تر از حیوانات جوان هستند. بعضی مایکوتوکسین‌ها، مثل آفلاتوکسین در سلامتی‌اشان هم مخاطراتی را ایجاد می‌کنند. این مایکوتوکسین به عنوان یک موتاژن شناخته شده است. شناسایی آفلاتوکسین در ذرت می‌تواند باعث کاهش قیمت آن جهت بذر و یا حتی معدوم ساختن آن شود. آلودگی با مایکوتوکسین ها ارتباط مستقیم با تاثیرات جوی دارد.

قارچ Aspergillus Flavus تولید کننده آفلاتوکسین در محصولاتی مثل ذرت، پنبه‌دانه و بادام زمینی است. قارچ به طور معمول در طبیعت وجود دارد، اما مقدار آن در هوای گرم و خشک افزایش می‌یابد. آلودگی آفلاتوکسین در ذرت‌هایی بیشتر است که تحت شرایط استرس تولید شده‌اند. بنابراین، خشکی، گرما، حشرات، کرم‌ها و استرس‌ ناشی از بارورکنندگی همگی منجر به ایجاد مقادیر بالای آفلاتوکسین در گیاه می‌شوند. تلاش برای ایجاد هیبریدهای ذرتی که به آلودگی قارچی مقاوم باشند و سم را در خود انباشته نکنند، وجود دارد، با وجود این هیبریدها بسیار مقاوم هستند ولی از تجمع سم به طور کلی نمی توان جلوگیری کرد. با کاهش استرس و مراقبت از حمله حشرات می‌توان در مقدار آفلاتوکسین کاهش ایجاد کرد (CAST , 1999) .

دمای Fْ100-80 و رطوبت نسبی %85 (% 20-18 رطوبت در دانه‌ها وجود دارد) شرایطی بهینه برای تولید سم و رشد قارچ است.

از طرف دیگر مصرف‌ این محصولات به عنوان خوراک دام می‌تواند سبب ایجاد انواع دیگری از آفلاتوکسین‌ها (M1 , M­2) در شیر حیوانات شود. آلودگی ذرت به عنوان غذای دام و طیور و نیز ماده اولیه جهت فراهم کردن انواع گسترده‌ای از مواد غذایی و تنقلات، دارای اهمیت ویژه‌ای است و کاهش آفلاتوکسین به روشهای مختلف ضروری می‌باشد.

محصولات کشاورزی مثل ذرت، علوفه، بنشن، گندم و یونجه را می‌توان با سیلوکردن نگاهداری کرد. در بسیاری از کشورها محصولات سیلویی دارای ارزش غذایی بالاتری به خصوص برای دام‌ها می‌باشند. در کشورهای اروپایی مثل هلند، آلمان و دانمارک بیش از %90 محصولات تولیدی در سیلوها نگاهداری می‌شوند. حتی در کشورهایی با شرایط عمومی آب وهوایی مناسب جهت خشک کردن مثل فرانسه و ایتالیا، حدود %50 از محصولات خود را در سیلوها نگاهداری می کنند. (wilkson et al.1996) . جهت تولید سیلویی با کیفیت بالا نیاز به مراحل تخمیر میکروبی مناسب وجود دارد. میکروارگانیسم‌های دخیل در مراحل تخمیر سیلوها، علاوه بر افزایش کیفیت غذایی محصول، قادر خواهند بود تا از رشد میکروارگانیسم‌های بیماری‌زا و همچنین قارچ‌های مولد توکسین، جلوگیری کنند.

از آنجاییکه سیلوکردن محصولات بر پایه تخمیرهای متنوع اسید لاکتیکی تحت شرایط بی‌هوازی است، به کار بردن سویه‌های باکتریایی تولیدکننده اسیدلاکتیک که در سم‌زدایی و کاهش تولید آفلاتوکسین مؤثر هستند، منطقی‌تر به نظر می‌رسد. باکتری‌های اسیدلاکتیک محیطی و ساپروفیت موجود در محصولات، کربوهیدارتهای محلول در آب (WSC) موجود در محصولات را به اسیدلاکتیک و نیز مقدار کمی اسیداستیک تخمیر می‌کنند. بر اثر تولید این اسیدها، PH مواد سیلو شده پایین آمده و رشد میکروارگانیسم‌های فاسدکننده، باز داشته می‌شود. باکتری‌های اسیدلاکتیکی که عمدتاً در سیلوها یافت می‌شوند. اعضای جنسی‌های لاکتوبا سیلوس، پدیوکوکوس، لوکونوستوک، انتروکوکوس، لاکتوکوکوس و استرپتوکوکوس می‌باشند. اکثر باکتری‌های اسیدلاکتیک موجود در سیلوها، مزوفیل‌اند، یعنی در دمای بین Cْ50-5 رشد می‌کنند که دمای بهینه رشد آنها بین Cْ40-25 می‌باشد. آنها PH سیلو را تا 5-4 پایین می‌آورند که این به گونه و شرایط محصول بستگی دارد.

همه باکتری‌های اسیدلاکتیکی هوازی های اختیاری‌ اند اما بعضی شرایط بی‌هوازی را ترجیح می‌دهند (Holzapfel and schillinger , 1992; Teuber et al. 1992) . جمعیت LAB در فاصله بین دروکردن و سیلو کردن محصول افزایش می‌یابد، که این بر اثر احیاء حالت‌های تاخیری است و نه اضافه کردن مصنوعی و تلقیح میکروارگانیسم. محتوای قندی و ترکیبات قندی موجود در محصول و مقدار ماده خشک و شرایط اسیدی و اسمزی موجود در سیلو، بر رشد و رقابت باکتری‌های اسید لاکتیک در تخمیر سیلویی تأثیر می‌گذارند. فاز تخمیری سیلوها در زمانیکه شرایط سیلو بی‌هوازی شود، آغاز می شود که این عمل معمولاً بعد از چند ساعت از سیلوکردن که اکسیژن اتمسفری موجود در اعضای گیاه و فواصل محصول خارج شد، آغاز می‌شود و بسته به نوع محصول سیلو شده و شرایط سیلو، برای چند روز تا چند هفته ادامه پیدا می‌کند. در این فاز، لاکتو باسیل‌ها میکروارگانیسم‌های غالب سیلو هستند و PH سیلو را با توجه به عمل تخمیر خود بین 5-8/3 پایین می‌آورند.

زیستگاه:

باکتری های اسید لاکتیکی به طور متداول وجود دارند و وجود کثیرشان درفرآیند های تخمیری شناخته شده است و یا به عنوان ساکنین سطوح مخاطی موجودات عالی شناخته شده اند. آنها نیازمند محیط های غنی غذایی جهت ساکن شدن هستند. درکنار هیدرات کربن ها، نیاز آنها به اسیدهای آمینه، پپتیدها، نمک ها و ویتامین ها، نیز تأمین باید گردد. (carr,chill& maida,2002)

LAB به عنوان نگهدارنده های بیولوژیکی (biopreservatives)

LBA ها به طور معمول درمواد غذایی وجود دارند و عنوان کشتهای خالص به طیف وسیعی از محصولات غذایی اضافه می شوند. آنها را به عنوان میکروگانیسم هایی بی خطر می دانند و حتی در برخی موارد منافع آنها در سلامتی انسان و حیوان به اثبات رسیده است(probiotics). LAB طیف وسیعی از ترکیبات ضد میکروبی تولید می‌کنند مثل محصولات تخمیری کاهش دهنده PH، اسید استیک و اسید لاکتیک و نیز پراکسید هیدروژن، اسید فرمیک، اسید پروپیونیک و دی استیل (Lind
gren&Dobrogosz,1990)مکانیسم دقیق عمل ضد میکروبی با توجه به پیچیدگی و همکاری ای که ترکیبات مختلف بایکدیگر دارند، مشخص نشده است. عمده تحقیقات برمبنای شناسایی و تشخیص مواد مختلف ضد میکروبی، و به خصوص ضد باکتریایی، درسیستم های ساده In vitro بوده است و اطلاعات کمی درباره مکانیسم های کلی سیستم های نگهدارنده پیچیده درمحیط های غذایی و غذای دامی وجود دارد (Earnshaw,1992). مطالعات درباره اثر LAB برروی قارچها پیچیده و دشوار است که به دلیل حساسیت اکثر قارچها به محصولات عادی تخمیر مثل اسیدهای لاکتیک واستیک است (Bonestroo et al ,1993;lindren &dobrogosez,1990 ) مقالات چاپ شده درباره LAB های ضد قارچ هنوز کم هستند و اکثر آنها به فعالیت بازدارندگی LAB اشاره دارند. تا به امروز مطالعات کمی درمورد شناسائی ترکیبات و معایب گزارش شده است(جدول 1)


متابولیت های ضد قارچی

اسیدهای آلی :

اسید لاکتیک متابولیت اصلی LAB است که سبب کاهش PH می شود وبرای بسیاری از ارگانیسم ها بازدارنده است (Eklund.1989). هیدروفوبیک ترین شکل اسید که غیر قابل تجزیه است به دیواره سلول نفوذ می‌کند و درداخل سلول تجزیه شده، H+ ایجاد می‌کند که سبب اسیدی شدن پلاسما می شود (Axelsson,1990). علاوه بر اثر PH، اسید تجزیه نشده، شیب الکتروشیمیای پروتون را به هم می زند و سبب باکتریواستاتیک و درنهایت مرگ باکتری های حساس می شود (Eklund,1989).

LBA های هتروفرمنتیو، استیک اسید درحضور گیرنده های خارجی الکترون درمقادیر نسبتاً زیاد، تولید می‌کنند و در این حالت اسید پروپیونیک تنها درمقادیر ناچیزی تولید می شود. هردو اسید دارای pka بالایی نسبت به اسید لاکتیک هستند و بنابراین دریک PH مشخص نسبت بالاتر اسید غیرقابل تجزیه را دارا هستند. مشابه اسید لاکتیک، اسید های استیک و پروپیوتیک با دیواره های سلول واکنش داده و شیب الکتروشیمیایی پروتون راخنثی کننده اما اثر اسید استیک و پروپیوتیک اغلب به PH کاهش یافته توسط اسید لاکتیک وابسته است (Eklund,1989). اسید پروپیونیک رشد قارچ راکاهش می‌دهد، به خصوص درPH پایین، و بردیواره قارچی د رPH های زیر 5/4 اثر می گذارد. همچنین اسید استیک و اسید پروپیونیک مانع جذب اسید های آمینه می شوند(Eklund,1989). نمکهای اسید پروپیونیک مثل پروپیونات سدیم و پروپیونات آمونیوم اثر مشابهی برروی مخمرها و قارچهای رشته ای در PH پایین می گذارند. Moon(1989) دریافت که ترکیبی از اسیدهای لاکتیک واستیک و پروپیوتیک مانع رشد گونه های مخمری می شود که به طور طبیعی درغلظتهای بالای (100mm) هرکدام از اسیدها به تنهایی، به جز پروپیونیک اسید، به خوبی رشد می‌کند. اسید لاکتیک تولید شده توسطLAB و استات سدیم موجود در MRS (de man Rgosa, &sharpe)، محیط استاندارد رشد برای LAB، می توانند اثرات ضد قارچی توأمی ایجاد کنند (cabo et al,2002;Bullerman 2002). استات سدیم موجود در MRS همچنین می تواند به عنوان یک عامل کمک کننده باسایر ترکیبات ضد قارچی تولیدشده توسط LAB عمل کند(stiles et al,2002). همچنین مشاهده شد است که LAB های غیر بازدارنده می توانند ازسوشهای دارای فعالیت ضد قارچی بالا، اسید لاکتیک بیشتری تولید کنند (Magnusson, strom,roos,sjogren& schnurrer,2003). به هرحال اثرات بازدارندگی اسیدهای آلی مثل اسید لاکتیک، اسید استیک و اسید پروپیونیک ادامه پیدا می‌کند تا مطالعات اثرات ضد میکروبی LAB پیچیده شود، تا زمانیکه خالص سازی بیشتر و دقیق تر و شناسایی بهتر مواد دخیل در آن صورت بگیرد(Magnusson,et al 2003).



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

بهینه‌ سازی انرژی در فرآیند تولید فلز روی

شنبه 29 آبان 1395

بهینه‌ سازی انرژی در فرآیند تولید فلز روی

1-1- خواص عمومی

فلز روی به رنگ سفید مایل به آبی یا نقره‌ای می‌باشد. روی خالص خیلی نرم است. در درجه حرارت‌های معمولی ترد و شکننده بوده و با ضربات چکش به راحتی می شکند و آن را نمی‌توان نورد کرد. در درجه حرارت‌های 100 الی 150 درجه سانتی گراد می توان آن را به راحتی نورد و تبدیل به ورق نمود و ورق هایی به ضخامت تا 1/0میلی‌متر از آن ساخت؛ ولی در 250 درجه سانتی گراد مجددا به حالت ترد و شکننده در آمده و به شکل گرد در می‌آید؛ ولی برای ضخامت‌های کم قابلیت تورق ومفتول کشی را دارا می باشد. سختی و مقاومت تسلیم فلز روی وقتی که با هیچ عنصری آلیاژ نشده باشد، از قلع و سرب بالاتر است و نسبت به آلومینیوم و مس پایین تر می‌باشد. در مکان‌هایی که تنش‌های زیادی به فلز وارد می شود نبایستی از فلز روی استفاده نمود؛ چرا که روی در مقابل خزش، مقاومت کمی از خود نشان می دهد. مصارف این فلز تابع شکل پذیری آن است. وقتی که این فلز با 4 درصد آلومینیوم آلیاژ شود، مقاومت تسلیم و سختی آن به اندازه قابل توجهی افزایش خواهد یافت. چنین آلیاژی از قابلیت ریخته‌گری برخوردار بوده و به خصوص ریخته گری تحت فشار برای آن زیاد رایج است. سایر طرق ریخته گری کمتر مصرف می شوند.

فلز روی با خاصیت الاستیسیته زیاد، شکل پذیر بسیار خوبی دارد. خاصیت الکترونگاتیوی روی سبب استفاده وسیع آن در باتری های خشک شده است. از خواص مهم و تکنیکی روی در صنعت، حفاظت خیلی خوب پوشش های آن در مقابل خوردگی است.

1-1-2- خواص فیزیکی و مکانیکی

در جدول 1-1 خواص فیزیکی و مکانیکی فلز روی آورده شده است.

جدول 1-1: خواص فیزیکی و مکانیکی فلز روی

خواص

مقدار

سختی (در جدول موهس)

5/2

سختی برینل( 500 کیلوگرم بار برای 30 ثانیه)

30

سختی ویکرز (HV)

KP/mm250

سرعت صوت (30)

Km/s6/3

ویسکوزیته ـ مایع در نقطه ذوب 5/419 یا k7/692

N/m00385/0

کشش سطحی ـ مایع در نقطه ذوب 5/419 یا k7/692

N/m782/0

کشش سطحی ـ مایع در نقطه ذوب 450 یا k2/723

N/m755/0

مقاومت ضربه ای (انبساط طولی، روی فشرده=30%)

(ft-lbs/in235-26) j/cm29-5/6

ضریب ارتجاعی (مدول الاستیسیته)

(Psi 1071) MN/m2 1047

ضریب اصطکاک

21/0

انبساط طولی ـ حالت نرم 95/99%

65%

حالت سخت 0/98%

5%

مقاومت کششی برای حالت نرم

Kg/mm2 32-16

مقاومت کششی برای حالت سخت

Kg/mm2 27-18

حد گسیختگی برای درجه خلوص 995/99%

Kg/mm2 14-10

حد گسیختگی برای درجه خلوص 99/99%

Kg/mm2 16-12

در شکل 1-1 تاثیر درجه حرارت، بر تراکم پذیری روی نشان داده شده است.

1-3-2- روش‌های تولید گرد روی

1- تولید گرد روی به روش تقطیر

انواع زیادی از کوره‌ها، ‌جهت به بخار تبدیل کردن روی از شمش یا قراضه‌های پرعیار روی و سرباره‌های کارگاه‌های گالوانیزاسیون، مورد استفاده قرار می‌گیرند. از جمله: کوره‌های الکتروترمال، کوره‌های افقی،‌ کوره‌‌های نوع نیوجرسی.

اندازه ذرات گرد روی بستگی به شرایط بخار، چگالش آن و چگونگی کنترل فرآیند دارد. در این روش انرژی مصرف شده در حدود kwh1000 به ازای هر تن گرد به علاوه حدود 15 مترمکعب (kJ530) گاز جهت ذوب و پیش حرارت و غیره، و کمتر از 2 کیلوگرم کک ( به ازای هر تن گرد روی) مصرف می‌شود.

2- تولید گرد روی به روش اتمایز کردن

اتمایز کردن به معنای تبدیل مایعات به پودر می‌باشد. در این روش ابتدا روی را به حالت مذاب در آورده سپس از طریق نازلی، قطرات بسیار کوچک مذاب روی، به داخل جریان هوای افقی راه پیدا می‌کند و در آنجا،‌ فشار هوا (یا گاز دیگری) باعث اتمایز شدن قطرات می‌گردد و در نهایت محصول توسط فیلترهای کیسه‌ای جمع‌آوری می‌گردند.

محصول این روش به طور معمول درشت‌تر از محصول روش قبلی می‌باشد؛ بدین صورت مرسوم است که محصول روش تقطیر را، گرد روی و محصول روش اتمایز کردن را، پودر روی می‌نامند.

تولید به روش اتمایز کردن معمولا نیاز به 10-5 کیلوگرم در دقیقه فلز روی و 1030 تا 1380 کیلوپاسکال فشار هوا دارد. اغلب کارخانجات تولید روی الکترولیتی، جهت تامین پودر روی مورد نیاز برای تصفیه محلول سولفات روی در کنار تولید شمش،‌یک واحد تولید پودر روی به روش اتمایز کردن دارند.

در این روش با تنظیم نازل و حجم و فشار سیال، دانه‌بندی پودر روی قابل کنترل می‌باشد. در کارخانه Risdon در استرالیا بیش از نیمی از ذرات،‌ قطری بین 200-40 میکرون دارند؛ در حالی که پودر روی مصرفی در کارخانه Illinois در حدود 70 درصد، قطری بین 75 تا 800 میکرون دارند.

پودر روی به صورت اشکال نامنظمی تولید می‌شود. این در حالی است که گرد روی به صورت کاملا کروی با سطح مخصوص زیادتری نسبت به پودر روی حاصل می‌گردد: به طوری که نسبت سطح مخصوص بر واحد جرم گرد روی بسیار بیش‌تر از مقدار آن برای پودر روی می‌باشد. سطح مخصوص زیاد باعث افزایش اکسید روی وکاهش محتوی روی فلزی می‌گردد. بر روی، روی فلزی یک فیلم نازک اکسید تشکیل می‌شود که موجب کاهش کارآیی آن می‌گردد که نیاز به احیا نمودن مجدد آن می‌باشد. واکنش زیر احیای اکسید روی را نشان می‌دهد:

(1-18)

نظر به این که گردهای روی دارای سطح مخصوص بالایی هستند، جهت جلوگیری از تشکیل اکسید روی باید در بسته‌بندی آنها مراقبت بیش‌تری به عمل آید و کاملا خشک نگه داشته شوند. به طور معمول در صورت بالا بودن درصد اکسید روی، محصول مجدداً به کارخانه ذوب بازگردانده می‌شود.

3- تولید گرد روی به روش‌های دیگر

دیگر روش‌های تولید گرد یا پودر روی توسط Hafford و همکاران در سال 1982 مورد مطالعه قرار گرفته که از لحاظ صنعتی از اهمیت کم‌تری برخوردار می‌باشند.

1-3-3- ترکیب شیمیایی و خصوصیات فیزیکی گرد روی

خصوصیات گرد روی تا حدودی می‌‌تواند مطابق با نظر مصرف کننده تهیه و تنظیم گردد؛ با وجود این هر شرکت تولید کننده محصول خاص خود را با مشخصات ویژه‌ای به بازار عرضه می‌دارد؛ ضمن اینکه که توانایی تغییر برخی از مشخصه‌های فیزیکی ( مانند دانه بندی) و یا شیمیایی محصول خود را مطابق نظر خریدار دارا می‌باشد.

مقدار ناخالصی‌های محتوی گرد روی به بزرگی تناژ تولید و طبیعت مواد خام استفاده شده بستگی دارد. مقدار سرب موجود در گردها عموما از 15/0 درصد بالاتر نمی‌رود و سعی در این است که میزان سرب محتوی به پایین‌ترین مقدار خود برسد. البته در پودرهای روی مورد مصرف در تصفیه الکترولیتی روی، میزان سرب را بالا در نظر می‌گیرند. مقدار اکسید روی محتوی در گردهای روی عموما به میزاان 3 تا 5 درصد می‌باشد. این مقدار به اندازه ذرات گرد بستگی دارد. هرچه میزان اندازه ذرات کم‌تر باشد،‌ به دلیل سطح مخصوص بیش‌تر،‌ اکسید روی بیش‌تری تشکیل‌ می‌شود. اکسید روی و اکسی کربنات‌ها باعث غیر فعال شدن سطح فلز روی می‌شوند. به طور کلی روی فلزی محتوی در گردها نبایستی کمتر از حدود 97-95 درصد باشد.

1-3-4- مصارف گرد روی

1- گرد روی جهت تولید پولک یا فلس روی

گرد روی می‌تواند به صورت پولک در بیاید. شکل پولکی روی که دارای سطح مخصوص بالایی می‌باشد، توسط آسیا نمودن از نوع گلوله‌ای در داخل سیال غیر واکنش‌ دهنده‌ای مانند یک هیدروکربن که حاوی حدود 3 درصد روان ساز مانند اسید استئاریک و دیگر افزودنی‌های سودمند می‌باشد، به دست می‌آید.

علت انتخاب چنین سیالی مانع شدن از پیوند ذرات روی و حالت زینتر شدن در طول عملیات آسیا کردن می‌باشد. ذره گردها توسط آسیای گلوله‌ای تخت شده و به صورت پولک در می‌آید. پولک‌ها در فیلترها به صورت تر یا خشک جمع آوری گشته، سپس بسته بندی می‌شوند. از لحاظ ابعادی،‌ ضخامت پولک در حدود میکرون و نسبت قطر به ضخامت حدود 10 می‌باشد. باید در نظر داشت که به دلیل استفاده از سیال قابل اشتعال در تولید پولک روی و مانع شدن از ایجاد برخی از ناخالصی‌ها، تولید پولک عملیاتی وقت‌گیر و کند می‌باشد. پولک روی به عنوان رنگ‌دانه در مواد مختلف از جمله پلاستیک‌ها مورد مصرف قرار میگیرد،‌ پولک روی ظاهری پرزرق و برق به رزین‌ها جهت مصارف خاص می‌بخشند؛ هم چنین هدایت الکتریکی را افزایش می‌دهد ودر پوشش ضدخوردگی مصرف دارد.

3-3-4- پتانسیل الکتریکی منفرد عناصر فلزی

هرگاه الکترود فلزی، داخل فاز مایعی که حاوی املاح محلول همان فلز است قرار گیرد، پتانسیل الکتریکی به نام پتانسیل الکترود منفرد به وجود می آید.

به طور معمول این پتانسیل الکتریکی بر حسب پتانسیل الکتریکی هیدروژن که به عنوان مبنا و معادل صفر استاندارد شده است، سنجیده می شود. پتانسیل الکترود استاندارد بعضی از فلزات در جدول 5-1 آورده شده است.

3-3-5- پلاریزه شدن الکترودها

پلاریزاسیون اثر مهمی در مصرف انرژی الکتریکی سلول الکترولیز دارد. هنگامی که یک جریان الکتریکی از یک سلول الکترولیز عبور می کند، اختلاف پتانسیل لازم برای برقراری این جریان الکتریکی به مقدار قال توجهی بزرگتر از مجموع جبری پتانسیل منفرد کاتد و آند به اضافه پتانسیل لازم برای مقاومت اهمی الکترولیت و اتصالات مربوط است. این اختلاف ناشی از پلاریزه شدن الکترودها می باشد. پلاریزاسیون ناشی از تجمع یون های فلزی در اطراف آند و کاهش آن در اطراف کاتد می باشد. در نتیجه غلظت یون ها در اطراف الکترودها متفاوت از غلظت متوسط یون فلزی در فاز مایع می باشد و به علت تغییر غلظت یون ها در اطراف الکترودها نیروی الکتروموتوری ایجاد می شود که با پتانسیل الکتریکی برقرار شده در سلول، دارای جهت مخالف می باشد و برای غلبه بر این نیروی الکتروموتوری باید پتانسیل الکتریکی سلول الکترولیز را افزایش داد. هم چنین رسوب یون فلزی ناخالصی ها همراه با فلز مورد نظر در کاتد و یا ناخالصی‌های موجود در فلز کاتی و تشکیل حباب های اکسیژن در سطح آند نامحلول و حباب‌های هیدروژن در سطح کاتد یا ناخالصی های موجود در آند باعث تغییر جنس آند و کاتد می‌گردد و خود این امر، اختلاف پتانسیلی را ایجاد می کند که در سلول الکترولیز پیش بینی نشده است و برای غلبه بر آن باید اختلاف پتانسیل سلول را افزایش داد. مجموع این پتانسیل های اضافی تحت عنوان پلاریزاسیون الکترودها نام گذاری شده است.

3-3-6- فراپتانسیل (فراولتاژ)

اضافه ولتاژ لازم جهت غلبه بر عامل پلاریزاسیون را در جریان الکترولیز، فراولتاژ نامگذاری کرده اند. در زیر فراپتانسیل کاتدی و آندی شرح داده می شوند:

3-3-7- فراپتانسیل کاتدی

فراولتاژ کاتدی در رابطه با یون هیدروژن در اطراف کاتد و پتانسیل لازم برای تصاعد آن می باشد؛ لذا فراپتانسیل (فراولتاژ) هیدروژن عبارت از اختلاف پتانسیل تعادل هیدروژن با پتانسیل لازم جهت خنثی و متصاعد شدن آن در کاتد خواهد بود. فراپتانسیل هیدروژن بستگی به عوامل متعددی دارد. یکی از مهمترین این عوامل جنس فلز کاتد و حالت سطحی و ناخالصی های موجود در آن می‌باشد. افزایش چگالی جریان الکترولیز عامل دیگری در افزایش فرا ولتاژ هیدروژن است. برعکس، دما اثر معکوس داشته و با افزایش آن فراولتاژ هیدروژن کاهش می یابد. از این امر در صنعت روی استفاده می شود. روی دارای پتانسیل الکترود منفرد معادل 76/0- ولت است و به صورت نظری در حضور یونهای هیدروژن (پتانسیل الکترود منفرد قراردادی معادل صفر) باید یونهای هیدروژن در کاتد خنثی و متصاعد شوند؛ در حالی که عملا در صنعت با تنظیم شدت جریان؛ کنترل غلظت یون های هیدروژن در اطراف کاتد؛ خنک کردن الکترولیت (واکنش الکترولیز سولفات روی گرمازاست)؛ و انتخاب کاتد مناسب (آلومینیومی) با سطح کاملا صاف و صیقلی، فراولتاژ هیدروژن را آنقدر بالا می برند که فلز روی به آسانی و با راندمان جریان بالا در سطح کاتد رسوب می کند.

3-3-8- فراپتانسیل آندی

این فراولتاژ از درجه اهمیت کمتری نسبت به فراولتاژ کاتدی برخوردار است. این فراولتاژ بستگی به ولتاژ لازم جهت تصاعد اکسیژن در مورد آندهای نامحلول دارد؛ لذا در این نوع الکترولیزها شرایط باید طوری تنظیم گردد تا تصاعد اکسیژن از سطح آند تسهیل شود. تشکیل حباب های اکسیژن و باقی ماندن آنها در سطح آند باعث افزایش اضافه ولتاژ شده و مصرف انرژی الکتریکی را در الکترولیز افزایش می دهد.

3-3- مقاومت اهمی الکترولیت و اتصالات

مقاومت اهمی الکترولیت یکی از عوامل اصلی در تعیین پتانسیل الکتریکی است که بستگی به عوامل زیر دارد؛

-فاصله دو الکترود از یکدیگر: هر قدر این فاصله کمتر باشد، مقاومت اهمی نیز کمتر خواهد بود. از طرفی این فاصله از حد معینی نمی تواند کمتر باشد. اگر این فاصله بسیار کم باشد، خطر تشکیل گره در سطح کاتد و اتصال آن با آند به وجود می آید و باعث اتصال کوتاه بین آندو کاتد شده و مصرف انرژی را افزایش خواهد داد.

از طرف دیگر برقراری فاصله کم بین آند و کاتد مستلزم دقت زیاد در گذاشتن آند و کاتد در سلول الکترولیز می باشد.

- هدایت الکتریکی الکترولیت: این امر بستگی به ترکیب الکترولیت و درجه حرارت دارد. اسیدی بودن الکترولیت باعث افزایش هدایت الکتریکی است و افزایش درجه حرارت نیز همین خاصیت را دارد؛ ولی باید توجه نمود که وجود اسید آزاد به مقدار زیاد و درجه حرارت بالا، باعث واکنش‌های ثانویه در جریان الکترولیز که مصرف کننده انرژی هستند، می شود؛ لذا این دو عامل باید به طور بهینه در نظر گرفته شوند.

- مقاومت ناشی از اتصالات الکتریکی : انرژی الکتریکی معمولا توسط دو تسمه (شینه) مسی که در دو طرف سلول های الکترولیز قرار دارد به الکترودها منتقل می شود. الکترودها نیز در قسمت فوقانی خود دارای دو زائده می باشند. این زائده ها بر روی تسمه های مسی قرار گرفته و بدین ترتیب اتصال الکترود را با منبع انرژی الکتریکی برقرار می کنند. وجود نقاط اکسیدی شده ویا لکه‌های روغنی در روی تسمه مسی انتقال الکتریسیته و یا ناصاف بودن سطح زائده های الکترودها باعث می شود که اتصال بین الکترود و تسمه (شینه) مسی حامل جریان کامل نبوده و مقاومت اهمی این اتصالات افزایش یابد.

فهرست مطالب

عنوان صفحه

مقدمه---------------------------------------------------- 2

فصل اول: خواص و کاربرد فلز روی

1-1- خواص عمومی----------------------------------------------------- 5

1-1-2- خواص فیزیکی و مکانیکی-------------------------------------------- 5

1-1-3- خواص حرارتی---------------------------------------------------- 7

1-1-4-خواص الکتریکی، مغناطیسی و الکتروشیمیایی------------------------------- 10

1-1-5- خواص اتمی و بلور شناسی------------------------------------------- 12

1-2- موقعیت در جدول تناوبی----------------------------------------------- 13

1-2-1- شیمی فضایی----------------------------------------------------- 13

1-2-2- حالت تک ظرفیتی-------------------------------------------------- 14

1-2-3- حالت دو ظرفیتی-------------------------------------------------- 14

1-2-4- حلالیت املاح----------------------------------------------------- 15

1-2-5- واکنش پذیری----------------------------------------------------- 15

1-2-6- اندازه‌گیری غلظت روی در محلول سولفات روی---------------------------- 18

1-3- مصارف فلز روی---------------------------------------------------- 19

1-3-1- روی جهت تولید گرد روی (خاکه روی)---------------------------------- 20

1-3-2- روش‌های تولید گرد روی-------------------------------------------- 21

1-3-3- ترکیب شیمیایی و خصوصیات فیزیکی گرد روی---------------------------- 23

1-3-4- مصارف گرد روی-------------------------------------------------- 23

1-3-5- کاربرد روی در باتری----------------------------------------------- 27

1-3-6- روی به عنوان رنگ دانه---------------------------------------------- 28

1-3-7- روی در تصفیه آب------------------------------------------------- 30

1-3-8- مصرف روی جهت تندرستی انسان، جانوران و گیاهان------------------------ 31

1-3-9- روی در ساخت اسباب بازی------------------------------------------ 31

1-3-10- مصرف روی در گالوانیزاسیون---------------------------------------- 31

1-3-11- دیگر مصارف روی------------------------------------------------ 32

1-3-12- مواد جانشین روی------------------------------------------------- 32

فصل دوم: هیدرومتالورژی

2-1- مقدمه----------------------------------------------------- 35

2-2- هیدرومتالورژی کانه یا کنسانتره اکسیدی روی------------------------- 35

2-2-1- استفاده از کنسانتره اکسید روی----------------------------------------- 35

2-2-1-1- کنسانتره روی تکلیس نشده (خام)------------------------------------ 35

2-2-1-2- کنسانتره تکلیس شده (کلسین)--------------------------------------- 36

2-2-2- استفاده از کانه خردایش شده معدن ( روش انحلال مستقیم)--------------------- 37

2-2-2-1- روش مرسوم--------------------------------------------------- 38

2-2-2-2- روش ویژه----------------------------------------------------- 38

2-3- لیچینگ---------------------------------------------------- 39

2-4-خنثی سازی--------------------------------------------------------- 45

2-5- کاهش غلظت آهن در محلول لیچ---------------------------------- 46

2-6- رسوب گذاری سیلیس موجود در محلول لیچ-------------------------- 47

2-7- عملیات حذف کلر از محلول سولفات روی---------------------------- 49

2-8- رسوب گذاری سولفات روی قلیایی------------------------------------- 51

2-9- تصفیه پساب------------------------------------------------- 51

2-10-کاهش غلظت کادمیوم و نیکل در محلول لیچ ------------------------- 52

2-11- کاهش غلظت کبالت در محلول لیچ-------------------------------- 54

فصل سوم: الکترومتالورژی

3-1- مقدمه----------------------------------------------------- 57

3-2- اصول الکترووینینگ-------------------------------------------- 58

3-2-1-الکترولیت------------------------------------------------- 58

3-2-2- فرایند الکترولیتی-------------------------------------------- 58

3-3-3- پتانسیل الکتریکی تجزیه-------------------------------------- 59

3-3-4- پتانسیل الکتریکی منفرد عناصر فلزی------------------------------ 60

3-3-5- پلاریزه شدن الکترودها--------------------------------------- 60

3-3-6- فراپتانسیل (فراولتاژ)----------------------------------------- 61

3-3-7- فراپتانسیل کاتدی------------------------------------------- 61

3-3-8- فراپتانسیل آندی-------------------------------------------- 62

3-3- مقاومت اهمی الکترولیت و اتصالات-------------------------------- 62

3-4- پتانسیل لازم برای الکترولیز-------------------------------------- 63

3-5- چگالی جریان------------------------------------------------ 65

3-6- راندمان جریان----------------------------------------------- 66

3-7- الکترووینینگ روی-------------------------------------------- 67

3-8- الکترودها--------------------------------------------------- 67

3-9- واکنش های شیمیایی در الکترووینینگ روی--------------------------- 68

3-10- روش های صنعتی الکترووینینگ---------------------------------- 69

3-11- اثر ناخالصی ها بر کمیت و کیفیت محصول الکترووینینگ روی------------- 70

3-12- اثر افزودنی ها در الکترووینینگ روی------------------------------- 71

فصل چهارم: بررسی مقاله‌های ارائه شده

مقاله ارائه شده توسط‌‌ آقایان: دکتر محمد شیخ شاب بافقی و امیر شیخ غفور---------------- 79

مقاله ارائه شده توسط M.Emre و S.Gurmen:------------------------------------- 91

مقاله ارائه شده توسط: D.B.DREISINGER A.M.ALFANTAZI and-------------------- 94

مقاله ارائه شده توسط IVANIVANOV------------------------------------------- 101

فصل پنجم: مواد و روش آزمایش

5-1- مواد و تجهیزات مورد نیاز----------------------------------------------- 109

5-2- ساخت محلول استاندارد------------------------------------------------ 109

5-2-1- ساخت محلول استاندارد سولفات روی----------------------------------- 109

5-2-2- ساخت محلول استاندارد اسید سولفوریک---------------------------------- 110

5-3- آزمایش تاثیر غلظتهای متغیر سولفات روی با غلظت ثابت اسید-------------------- 110

5-3-1- محاسبه وزن تئوری و راندمان------------------------------------------ 111

5-4- تبدیل واحد غلظتهای اسید و سولفات روی به واحد حجم------------------------ 112

5-5- آزمایش تاثیرات غلظتهای مختلف اسید سولفوریک با غلظت ثابت سولفات روی-------- 113

5- 6- آزمایش تاثیر صمغ عربی ---------------------------------------------- 113

5-6-1- تبدیل واحد ppm به واحد گرم بر لیتر----------------------------------- 114

5-6-2- محاسبه مقدار حجم صمغ که از محلول استاندارد باید برداشته و در بالن‌ها ریخته شود-- 114

5-7- آزمایش تاثیر سولفات منگنز--------------------------------------------- 115

5-8- آزمایش تاثیر صمغ در حضور منگنز با غلظت ثابت ppm200 ------------------- 115

5-9- آزمایش تاثیر صمغ در حضور پرمنگنات ------------------------------------ 116

5-10- آزمایش تاثیر‌آهن II ------------------------------------------------- 116

5-11- آزمایش تاثیر تلاطم-------------------------------------------------- 117

5-12- آزمایش تاثیر شدت جریان از 25/0 آمپر تا 5/1 آمپر-------------------------- 117

5-13- آزمایش تاثیر دما---------------------------------------------------- 117

5-14- مواد و تجهیزات مورد نیاز در روش آزمایشگاهی پیوسته -----------------------

5-15- روش انجام آزمایش در حالت پیوسته -------------------------------------

فصل ششم: نتایج و مدولاسیون

6-1- تاثیر غلظت اسید سولفوریک بر راندمان و انرژی مصرفی------------------------- 121

6-2- تاثیر غلظت روی بر راندمان و انرژی مصرفی--------------------------------- 122

6-3- بررسی تاثیر صمغ عربی بر راندمان و انرژی مصرفی---------------------------- 124

6-4- تاثیر غلظت سولفات منگنز بر انرژی مصرفی و راندمان-------------------------- 125

6-5- بررسی غلظت صمغ در حضور سولفات منگنز بر راندمان و انرژی------------------ 127

6-6- بررسی تاثیر پرمنگنات بر راندمان و انرژی مصرفی----------------------------- 128

6-7- بررسی تاثیر غلظت صمغ در حضور پرمنگنات بر راندمان و انرژی------------------ 130

6-8- بررسی تاثیر تلاطم الکترولیت بر راندمان و انرژی مصرفی ----------------------- 131

6-9- بررسی تاثیر غلظت آهن بر راندمان و انرژی---------------------------------- 133

6-10- بررسی تاثیر غلظت اسید در دانسیته جریان مختلف بر راندمان و انرژی------------- 134

6-11- بررسی تاثیر غلظت روی در دانسیته جریانهای مختلف بر راندمان و انرژی----------- 136

6-12- بررسی تاثیر دانسیته جریان در غلظتهای مختلف پرمنگنات بر راندمان و انرژی-------- 137

6-13- بررسی تاثیر دانسیته جریان در غلظتهای مختلف صمغ بر راندمان و انرژی در حضور پرمنگنات 138

6-14- بررسی تاثیر اسید در دماهای مختلف بر راندمان و انرژی------------------------ 139

6-15- بررسی تاثیر غلظت روی دردماهای مختلف بر راندمان و انرژی------------------- 140

6-16- بررسی تاثیر دما در غلظت‌های مختلف پرمنگنات بر راندمان و انرژی--------------- 141

6-17- بررسی تاثیر دما (درغلظتهای مختلف صمغ) بر راندمان و انرژی در حضور پرمنگنات--- 142

6-18- مدلسازی توسط نرم افزار SPSS --------------------------------------- 143

6-19- بررسی تأثیر دبی‌های مختلف بر راندمان و انرژی مصرفی در روش پیوسته ----------

6-20- بررسی تأثیر دانسیته جریان بر راندمان و انرژی مصرفی در روش پیوسته ------------

6-21- بررسی تأثیر غلظت اسید بر راندمان و انرژی مصرفی در روش پیوسته--------------

فصل هفتم: نتیجه گیری

نتیجه‌گیری -------------------------------------------------------------- 146

مراجع ---------------------------------------------------------- 149



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

بررسی مواد رادیو اکتیو، استخراج و آماده سازی جهت استفاده در راکتورها و تولید برق

شنبه 29 آبان 1395

بررسی مواد رادیو اکتیو، استخراج و آماده سازی جهت استفاده در راکتورها و تولید برق


مقدمه

اورانیوم، عنصری کمیاب محسوب می شود. این عنصر کاربردهای ویژه‌ای دارد؛ بنابراین تهیه، تولید و بازار مصرف آن به گونه ای خاص کنترل می شود. این عمل توسط «آژانس بین المللی انرژی اتمی»، انجام می پذیرد.

در گذشتة نه چندان دور، هر یک از کشورها جداگانه فعالیت می نمودند؛ تا اینکه آژانس مزبور پایه گذاری شد. پس از فروپاشی اتحاد جماهیر شوروی و تحول سیاسی در شرق اروپا، کشورهای بیشتری به آژانس مزبور، پیوستند. در حال حاضر، آژانس بین المللی انرژی اتمی 120 عضو دارد؛ که کشور ما نیز یکی از آنان است.

در ایران،فعالیت های هسته ای زیر نظر سازمان انرژی اتمی انجام می شود. سازمان مزبور، از چند معاونت تشکی شده؛ که معاونت تولید سوخت هسته‌ای، یکی از آنان است. معاونت مورد نظر، از چند واحد تشکیل می شود؛ که واحدهای اکتشاف و استخراج، سوخت و کانه آرایی دو واحد مهم آن محسوب می شوند.

واحد اکتشاف و استخراج، فعالیت‌های مربوط به اکتشاف و استخراج کانسارهای اورانیوم را، به عهده دارد. واحد سوخت و کانه آرایی، در رابطه با فرآوری کانسنگ های اورانیوم دار، فعالیت می کند.

از نظر اکتشافی، فعالیت های گسترده ای انجام شده ؛ و دو سوم کشور توسط پروازهای هوایی و دورسنجی مورد بررسی قرار گرفته است؛ که این فعالیت ها همچنان ادامه دارد.

پس از کشف مناطقی که دارای معدن اورانیوم هستند مثل منطقه سلقه و معدنکاری اورانیوم و استخراج آن توسط فرآیندهای سنگ معدن آماده تغلیظ شده ، و جهت تهیه در نیروگاه های هسته‌ای مورد استفاده قرار می گیرد. امید است که در این پروژه توانسته باشم نمایی از چرخة سوخت هسته ای در ایران را به رشته تحریر درآورده باشم.


چکیده

با توجه به مصرف روز افزون انرژی درصنایع مختلف، برای تامین انرژی مورد نیاز صنایع مختلف از منابع متفاوتی استفاده می شود.یکی از بهترین و به صرفه ترین منابع انرژی در جهان سوخت هسته ای می باشد که تولید انرژی از سوخت هسته ای در راکتورهای هسته ای صورت می پذیرد و از لحاظ مقدار تولید انرژی در مقایسه با دیگر منابع تولید انرژی سوخت هسته ای از اهمیت خاصی برخوردار است برای تفهیم این موضوع ذکر این مطلب ضروری است که حرارتی که از 500 گرم اورانیوم بدست می آید معادل حرارتی است که از 1500 تن زغال سنگ بدست می‌آید. بنابراین می توان گفت سوخت هسته ای یکی از بهترین و بزرگترین منابع تولید انرژی محسوب می شود. از آنجائیکه سوخت هسته ای مورد نیاز نیروگاههای هسته ای از ایزوتوپی از عنصر اورانیوم بنام اورانیوم 238 که در طبیعت فراوان یافت می شود و 99% از پوسته زمین را تشکیل می دهد تامین می شود. لذا اکتشاف این عنصر پرتوزا از اهمیت خاصی برخوردار است. مراحل مختلفی برای اکتشاف این عنصر استراتژیک طی می شود تا در نهایت به مناطق محدود امید بخش رسید. در مراحل اولیه ابتدا بررسی می شود که کانی سازی اورانیوم از لحاظ زمین شناسی در چه مناطقی می تواند وجود داشته باشد، بعد از مطالعات اولیه با توجه به این مطلب که عناصر سنگینی مثل اورانیوم در طبیعت از نظر ساختمان اتمی ناپایدار هستند ودائماً تمایل دارند که به حالت پایدار برگردند. این گرایش باعث تولید اشعة گاما، آلفا و بتا می‌شود. بیشترین تشعشات این عناصر اشعه گاما است و این اشعه نیز بوسیله شمارنده، سنتیلومتر، اسپکترومتر و سایر دستگاهها قابل اندازه گیری هستند.لذا برای پیدا کردن مناطقی که احتمال وجود عناصر رادیواکتیو در آنها وجود دارد. اشعه گاما را ابتدا دروسعت زیاد توسط اندازه گیری های هوایی توسط هواپیما یا هلی کوپتر برای مناطق وسیع وبزرگ تعیین می کنند. نتیجه این رادیومتری این عناصر می باشد. با پردازش و تفسیر دانسته های رادیومتری هوایی در محدوده هایی که با توجه به رادیومتری هوایی امید بخش تشخیص داده شد، عملیات رادیومتری زمینی و اندازه گیری اشعه گامای عناصر در مقیاس کوچکتر وزمینی انجام می شود تا در نهایت بعد از مراحل اکتشاف مقدماتی و تفضیلی و با حفر گمانه ها و تخمین ذخیره به کانسارهای اقتصادی اورانیوم رسید. پس از عملیات اکتشاف تفضیلی،مرحله بهره برداری و استخراج سنگهای حاوی اورانیوم صورت می‌گیرد. در مرحله بعدی با فرآوری این سنگها توسط روشهای مختلف از جمله خردایش و آسیاب آنها، فلوتاسیون و لیچینگ کانیهای اورانیوم از سنگهای باطله جدا شده و بصورت یک کیک زرد رنگی از سنگها استحصال می شود. در مراحل بعدی این کیک زرد تحت عملیات غنی سازی انجام می گیرد و به اورانیوم غنی شده که همان سوخت هسته ای است تبدیل می شود. در این حالت اشعه گاما بسیار قوی است. اشعه های گاما از نظر منشاء تولید به دو دسته تقسیم می شوند:

1- منشا اول سنگ طبیعی یا منابع طبیعی است.

2- منشاء دوم تولیدات صنعتی می باشد مثل اورانیوم غنی شده برای مصرف در راکتورها.

اورانیوم طبیعی اشعه گامای ضعیفی دارد، اما اشعه گامای چشمه‌های مصنوعی، گامای فوق العاده قوی دارد. عمده مصرف اورانیوم غنی شده بصورت سوخت هسته ای در راکتورهای هسته ای برای تولید برق می باشد. اما مصارف دیگری نیز دارد که از جمله مصرف در راکتورهای تحقیقاتی برای مطالعات هسته ای می باشد. از این فرآورده برای مصارف دیگر از جمله تولید رادیو داروها برای اندام و سلولهای سرطانی که فقط در آنها جذب می شود و آنها را از بین می برد نیز استفاده می کنند، رادیوداروها در راکتورهای تحقیقاتی بدست می آیند. مصرف دیگر استفاده از اشعه گامای حاصل از شکافت هسته ای در راکتورهای تحقیقاتی است که از این اشعه ای گاما برای مصارف پزشکی، کشاورزی و تولید رادیو داروها استفاده می کنند و مخربترین کاربرد آن استفاده از این منبع انرژی هسته ای در بمبهای اتمی و ویرانگر با شدت تخریب بالا می باشد.

با توجه به کاربردهای مخلتف عناصر رادیواکتیو و هم چنین تولید انرژی زیاد توسط سوخت هسته ای در راکتورهای هسته ای، بنابراین برای تولید بهینه و انرژی مقرون به صرفه تر از دیگر منابع با توجه به منابع گسترده و عیار بالای اورانیوم در محدوده هایی از کشورمان ایران، می توان برای تولید انرژی در دامنه زیاد از سوخت هسته ای استفاده کرد که برای این کار تاسیس نیروگاه های هسته ای مختلف در کشور از جمله نیروگاه اتمی بوشهر در حال اجراء می باشد و برای تامین سوخت هسته ای این نیروگاهها باید منابع اورانیوم موجود در کشورمان شناسایی و بعد از طی مراحل مختلفی اکتشافی و استخراجی تبدیل به سوخت هسته ای نیروگاهها و راکتورهای هسته ای مختلف در کشور از جمله نیروگاه اتمی بوشهر در حال اجراء ی باشد و برای تامین سوخت هسته ای این نیروگاهها باید منابع اورانیوم موجود در کشورمان شناسایی و بعد از طی مراحل مختلفی اکتشافی و استخراجی تبدیل به سوخت هسته ای نیروگاهها و راکتورهای تحقیقاتی برای مصارف دیگر شود. با راه اندازی نیروگاههای هسته ای در کشور می توان به تولید انرژی زیادی که از این روش بدست می آید دست یافت. البته باید به این نکته مهم توجه داشت که این امر با ضریب ایمنی بالایی صورت پذیرد زیرا خطر احتمالی یک نیروگاه هسته ای بزرگ کمتر از یک بمب اتمی نیست، بنابراین باید تمام نکات و زوایای ایمنی و بروز خطر احتمالی در نظر گرفته شود تا فجایعی مثل انفجار نیروگاه اتمی چرنوبیل روسیه هیچگاه در جهان تکرار نشود.



-1- رادیواکتیویته (Radio activity)

فروپاشی خودبخود هسته یک اتم باعث گسیل پرتوهائی از اتم می گردد که این پدیده را رادیواکتیویته وپرتوهای ساطع شده را در مجموع تشعشعات رادیو اکتیو می نامند که خود شامل اشعه فروپاشی خودبخود هسته یک اتم باعث گسیل پرتوهائی از اتم می گردد که این پدیده را رادیواکتیویته وپرتوهای ساطع شده را در مجموع تشعشعات رادیو اکتیو می نامند که خود شامل اشعه از جنس هسته هلیم (بارمثبت)، اشعة از الکترونها ( بار منفی ) و اشعه است که آن نیز از سری امواج الکترومانیتیک با فرکانس بالا می باشد و می توان ذرات فوتون را به آن نسبت داد. قدرت نفوذ اشعه در شرایط متعارفی در حدود چند سانتیمتر در هوا بوده بطوریکه با یک ورق کاغذ براحتی می توان جلوی آنها را سد کرد. اشعة حداکثر تا 5/1 میلی متر در سرب قابلیت نفوذ داشته و بالاخره اشعة دارای قدرت نفوذ بسیار زیادی است و تا چندین سانتیمتر در سرب نفوذ می کند. پرتوهای رادیواکتیو بهنگام برخورد با مواد گوناگونی سه اثر مختلف از خود بجا می گذارند:

1-1-1- اثر شیمیائی:

نظیر اثر نور بر امولوسیونهای حساس وفیلم عکاسی ( که منجر به کشف اشعة رادیواکتیو توسط هانری بکرل (1896) گردید):

1-1-2- اثر لومینسانس ( فسفرسانس) :

این پدیده تحت عنوان Scintillation در ساختمان دستگاه های سنتیلومتر مورد بحث قرار خواهد گرفت.

1-1-3- اثر یونیزاسیون:

که باعث یونیزه شدن برخی از گازها می شود که این خاصیت نیز بنوبه خود اساس کار برخی از وسایل سنجش رادیواکتیویته می باشد. (شمارشگر های گایگر)

هستة اتم با تشعش پرتوهای به هسته‌ای متفاوت با خواص جدید تبدیل می‌گردد. به عبارتی با تغییر جرم و عدد اتمی که ناشی از خروج پروتونها در قالب اشعه و الکترونها در قالب اشعة است اتم جدیدی بوجود می‌آید. این پدیده تحت عنوان تلاش هسته‌ای یا تلاشی رادیواکتیو[1]نامیده می شود. می‌دانیم مقدار تغییرات لحظه ای فوق نسبت به اتمهای حاضر در اتم(N) در لحظة دلخواه (T) مقدار ثابتی است ( قانون تجزیه) ، یعنی:

( = مقدار ثابت برای هر ایزوتوپ )

به عبارتی نسبت تلاشی هر هسته با تعداد اتمهای حاضر آن ایزوتوپ بوجود آمده نسبت مستقیم دارد.

(N تعداد اتمهای اولیه در لحظه t=0)

قانون تجزیه


هرگاه حالتی رادر نظر بگیریم که نصف اتمهای اولیه تبدیل به اتمهای حاضر شده اند یعنی نسبت باشد، داریم:


در اینجا t را با نمایش داده و آنرا نیمه عمر آن اتم می نامیم.

(Half-Life)

پس مدت زمان لازم برای تبدیل نصف اتمهای اولیه به اتمهای ثانویه می باشد. این زمان برای اتمهای گوناگون متفاوت بوده و مثلاً برای پلونیوم – 214 برابر ثانیه وب رای اروانیوم –238 برابر سال می باشد. این فعل و انفعالات تا جائی ادامه می‌یابد که منتهی به ایجاد یک اتم پایدار گردد. تا به حال سه سری از این واکنش ها شناسایی شده اند که پس از طی مراحل واسطه‌ای همگی به سرب ختم می‌شوند. در شکلهای (1-1) و (1-2) دو سری اورانیوم –238 و توریم – 232 نشان داده شده اند.

در علم زمین شناسی از پدیده فوق برای تعیین سن مطلق (Absolute Age) سنگها استفاده می‌شود که به روشهای مختلف مثل روش اورانیوم، روش پتاسیم آرگن، روش روبیدیم – استرونسیوم و کربن –14 انجام می پذیرد.

1-2-1- تاریخچه

مواد رادیواکتیو اورانیوم در سال 1789 توسط M.H.Klaproth کشف و بخاطر همزمانی آن با کشف سیاره اورانوس در آن دهه (1781) بنام اورانیوم خوانده شد ولی برای اولین بار بطور خالص توسط Peligot (1841) تهیه گردید. توریوم نیز در سال 1828 توسط J.Berzelius کشف شد. با کشف پدیده رادیواکتیویته توسط بکرل، (1896) و مطالعات پرارزش بعدی توسط دانشمندانی نظیر راترفورد، کوری، گابگر، مایر، ویلورد، بکلر، چادویک و سرانجام کشف رادیواکتیویتة مصنوعی توسط ایرن و ژولیوکوری (1934) اهمیت مواد رادیواکتیو فزونی یافت.

1-2-2- 1- کاربرد:

مواد رادیواکتیو انفجار دو بمب اتمی در 1945 قدرت بسیار عظیم انرژی اتمی را بر همگان روشن ساخت و از آن ببعد موج جدیدی برای اکتشاف اورانیوم و دستیابی به انرژی هسته‌ای آغاز گشت. تا قبل از آن تاریخ مهمترین استفاده از سنگهای معدنی اورانیوم بخاطر تهیه رادیوم بود که برای اولین بار توسط کوری ها کشف شده بود. رادیوم در آن موقع بعنوان یک منبع رادیواکتیو برای آزمایشات فیزیکی و شیمیائی گوناگون اربرد داشت و در نتیجه اورانیوم بعنوان یک محصول فرعی[2] رادیوم محسوب می شد.

از خود اورانیوم نیز بعنوان ماده رنگین در صنایع سرامیک و شیشه سازی عکاسی و بعنوان کاتالیزور در برخی واکنشهای شیمیائی و موارد محدود دیگری استفاده می‌شد.

1-2-1-1- تکنولوژی هسته‌ای:

نیاز به اورانیوم برای مصارف صنعتی با کنترل انرژی اتمی آغاز شد و پیشرفتهای بسیار چشمگیری در تکنیکهای اکتشافی و استخراج آن بوقوع پیوست. اهمیت انرژی اتمی را زمانی بهتر درک می‌کنیم که بدانیم چیزی حدود 500 گرم اورانیوم خالص ( که مکعبی به ابعاد 5/1 اینچ می شود) در حدود 10000 وات- ساعت انرژی تولید می‌کند که معادل انرژی حاصل از احتراق 1500 تن زغالسنگ است. در حال حاضر در حدود 375 نیروگاه اتمی در جهان در حال کار بوده و در حدود 15% انرژی مورد نیاز در جهان را تأمین می ‌کنند و صنایع دیگری نیز با استفاده از انرژی اتمی مشغول بکار هستند.

کاربردهای وسیع تکنولوژی هسته‌ای را در همه جا می‌توان یافت از جمله در ایران از فعالیتهای سازمان انرژی اتمی ایران در زمینة استرلیزاسیون با اشعة گاما و یا تولید رادیوایزوتوپ های داروئی می‌توان نام برد.

اورانیوم خالص طبیعی حاوی حدود 28/99% ایزوتوپ اورانیوم –238 و 71/0% اورانیوم – 235 و0057/0 % اورانیوم –234 است که در این میان تنها ایزوتوپ – 235 قابلیت شکافتن با نوترونهای حرارتی را داراست و از این رو بایستی بوسیله روشهای پیچیده‌ای از اورانیوم طبیعی جدا شود. دو ماده دیگر نیز بعنوان سوخت می‌توانند بکار روند: اورانیوم –233 که بطریق «تحولات زاینده» از توریوم – 232 بدست می آید و نیز پلوتونیوم –239 که آن نیز بطور مصنوعی از اورانیوم –238 حاصل می شود. ولی تقریبا تمامی راکتورهای در حال بهره برداری در جهان با اورانیوم – 235 و تعداد کمی با پلوتونیوم –239 کار می‌کنند.

بنابراین هدف اصلی پروژه های اکتشافی عنصر اورانیوم می باشد چرا که فعلاً توریوم مصرف چندانی مگر بعنوان دیرگداز در ساخت برخی آلیاژهای مخصوص ندارد و مصرف جهانی آن تنها حدود 300 تن در سال است. در قسمتهای بعدی نیز اکثراً تأکید بر اورانیوم داشته و فقط در مواردی از توریوم نیز ذکر می شود.

پس از استفاده از سوختهای هسته ای در راکتورها برخی از مواد باقیمانده مجدداً با اعمال فرایندهائی روی آنها بعنوان سوخت به راکتور بازگردانده و برخی بصورت پس مانده‌ها بایستی از جریان خارج شوند. امروزه مسئله از بین بردن و یا به عبارت صحیح تر از سترس خارج شدن این مواد که فوق العاده قدرت آلوده کنندگی دارند از جمله مشکلات فرعی تکنولوژی هسته‌ای می باشد. بخصوص آنکه مسئله دفن زباله های اتمی نیاز به مطالعات و بررسی بسیار دقیق و کنترل شده ژئوتکنیکی و مهندسی بهداشت دارند؛ چرا که نشت این مواد در اثر هر عامل پیش بینی نشده ای می تواند زندگی و محیط زیست همه موجودات را بشدت به خطر اندازد.

به طور خلاصه کلیه مراحل اکتشاف ،استخراج، کانه آرائی و غنی سازی، تهیه میله های سوخت راکتور ، تولید جریان برق از نیروگاه های هسته ای و سرانجام دفن پس مانده ها را در سیکلی به نام چرخه سوخت هسته ای[3] نمایش می‌دهیم ؛ (شکل 2-1) ابتدای این چرخه‌ها با اکتشاف و استخراج این مواد از زمین شروع شده و انتهای آن نیز با دفن این مواد در زمین خاتمه می یابد. که بدین ترتیب لزوم حضور کارشناسان معدن، زمین شناسی و ژئوتکنیک را در این دو مرحله و داشتن یک اطلاعات کلی از سایر مراحل را برای این افراد بخوبی توجیه می کند.

بنا به گزارشات آژانس بین المللی انرژی اتمی میزان تقاضا برای اورانیوم از 100-85 هزار تن ( با ضریب تبدیل 85/0 ) در سال 1985 به حدود 800-200 هزار تن در سال 2000 خواهد رسید. ( این آمار شامل بلوک شرق نمی‌شود).

در شکلهای (2-2) و((2-3) میزان تولید جهانی و نیز میزان تقاضا برای اورانیوم در سطح جهان نشان داده شده است.




-1- معدنکاری اورانیوم [1]

معدنکاری اورانیوم، مرحله ای بین اکتشاف کانسارهای اورانیوم و فرآوری آن است. معدنکاری اورانیوم، جدا کردن کانسنگ خام از سنگ در برگیرندة‌ طبیعی و همچنین انتقال جهت آرایش و فرآوری را، شامل می شود.

در ابتدای بحث این سوال پیش می آید که : « آیا معدنکاری اورانیوم متفاوت از معدنکاری سایرفلزات است؟» پاسخ به این پرسش این است که معدناکری اورانیوم مشابه معدنکاری سایر فلزات بوده و همان عوامل موثر در عملیات مربوطه تاثیر خواهند داشت؛ فقط به دلایل خصوصیات ویژه اورانیوم فن آوری ها یا روشهایی بکار گرفته می شوند که نکات فنی واقتصادی را، مدنظر قرار دهند.

4-2- خصوصیات معدنکاری اورانیوم

معدنکاری اورانیوم به دلایل ویژگیهای خاص این فلز، دارای خصوصیات زیر می باشد:

1) اورانیوم از عناصر رادیواکتیو بوده و خصوصیت مهم آن، تشعشع زایی است. تشعشعات محصولات ناشی از تجزیة کانسنگ اورانیوم، برای سلامتی خیلی مضر است. معدنکاران نبایستی در معرض بیشتر از یک مقدار مجاز از هوای حاوی گاز رادن قرار گیرند.

2) خصوصیت دیگر، کانی سازی نامنظم آن است. این سبب می شود که روش های استخراجی خاص بکار گرفته شده، و به منظور بدست آوردن عیارهای یکنواخت کانسنگ خام جهت فرآوری باید به کنترل عیار توجه شود. کنترل عیار را می توان با نمونه برداری دقیق از کانسنگ و بررسی چالشهای انفجاری از نظر میزان تشعشع زایی- بعنوان تابعی از عیار کانسنگ – انجام داد پس می توان چنین در نظر گرفتن که عملیات معدنکاری در مقایسه با سایر کانسنگ ها ساده تر است.با این روش می توان بخوبی و بصورت انتخابی عملیات معدنکاری را ، انجام داد.

3) خصوصیت دیگر آن، قابلیت حل در محلولهای شیمیایی (اسیدی و قلیایی) است. اورانیوم براحتی در محلولهای مذکور حل شده و این نوعی از روش معدنکاری، تحت عنوان معدنکاری انحلالی[2] را ارائه می دهد.

4-3- روشهای معدنکاری اورانیوم

همانطوریکه توضیح داده شد، معدنکاری اورانیوم همانند سایر روشهای معدنکاری کانسنگ ها صورت می پذیرد؛ ولی خصوصیاتی از آن سبب می شوند که بتوان روشهای دیگری را اعمال نمود یا در بعضی مواقع بعلت خطرات بایستی ایمنی بیشتری را، رعایت کرد.

معمولاً روشهای معدنکاری زیر را می توان برای کانسارهای اورانیوم در نظر گرفت

1) روش استخراج روباز[3] ؛

2) روش استخراج زیرزمینی[4] ؛

3) روش استخراج انحلالی (فروشویی) درجا[5].

4-3-1- روش استخراج روباز

روشهای استخراج روباز اورانیوم، مشابه سایر کانسارها انجام می شود. عوامل فنی و اقتصادی مورد نظر در این زمینه، کانسار را جهت استخراج روباز صورت می سازند.

چالزنی[6] با استفاده از چالزن های اتومتیک با راحتی و ایمنی انجام می شود. به دلیل طبیعت کانی های اورانیوم، بررسی وضعیت چالهای آتشبازی- از نظر میزان پرتوزایی جهت تعیین ناحیه حاوی کانسنگ با عیار مطلوب – می تواند انجام پذیرد که این خود، اطلاعات مفیدی را بدست می دهد که به عملیات آتشباری[7] کمک می کند.

آتشباری مطابق معمول با آنفو[8] - در صورت عدم وجود آب – انجام می پذیرد . با انجام و بررسی های میزان پرتودهی چالهای آتشباری حفر شده؛ می‌توان آتشباری انتخابی را برای کانسنگ، و آتشباری توده ای[9] را برای باطله و بعد از آن انجام داد.

درجه وشیب کاواک[10] به شرایط سنگ بستگی دارد. عرض و ارتفاع پله ها، ضرورتاً با توجه به نحوه کانی سازی واندازه لوازم بارگیری در نظر گرفته می شوند.

سنگ سخت توسط شاولها یا لودرهای سر به پیش[11] در کامیونها بارگیری می شود. در سنگ نرم بارگیری و باربری توسط اسکریپر صورت می‌پذیرد. در این معادن سکوهایی جهت تعیین میزان پرتودهی سنگ درون کامیونها، نصب شده اند که کامیونها از زیر آنها رد شده، و در نهایت مشخص می شود که بطور تقریبی بار درون هر کامیون چه عیاری دارد.

4-3-1-1- ایمنی رادیولوژیکی در معادن روباز اورانیوم

مخاطره و ریسک پرتودهی در این معادن کمتر از معادن زیرزمینی است؛ زیرا گاز رادن در هوای اتمسفر- به حجم بی نهایت- رقیق می شود.

حجم هوایی که گاز رادن را تولید می کند؛ مورد بررسی قرار گرفته وبهتر است که بدترین شرایط در نظر گرفته شود. البته مقدار گاز رادن تولید شده در سطح معدن می تواند در مدلهای اتمسفری برای تحلیل قرارداده شود؛ اما با فرض عدم حرکت هوا و حجم محدود شده آن- که گاز رادن را منتشر می کند- بررسی صورت می گیرد.

اختلاف قابل توجه بین عملیات روباز و زیرزمینی در تخمین حجم هوایی است که،رادن را تولید می کند. برای عملیات استخراج روباز؛ رادن تولید شده در حجم بی نهایت زیاد هوا منتشر می شود و در بیشتر موارد تمرکز رادن پایین بوده و معمولاً هیچ مخاطره ای بری کارگران وجود ندارد.

بهر جهت در بدترین شرایط؛ مثلاً یک فضای معین در داخل ارتفاع 10 متری دربالای عملیات در نظر گرفته شده وزمان رسیدن تمرکز ( غلظت) به مقدار مورد نظر محاسبه می شود.

4-3-2- روشهای استخراج زیرزمینی

با افزایش عمق، مزایای معدنکاری روباز کاهش می یابد و برای کانسارهای در اعماق 50 تا 200 متر، معدنکاری زیرزمینی بیشتر مورد نظر است.

با توجه به شرایط زمین و مرفولوژی کانسنگ به معدنکاران روشهای استخراج زیرزمینی را در نظر می گیرند.

1) روش استخراج بلوکی یا تخریب بزرگ[12]؛

2) روش استخراج با احداث طبقات فرعی[13]؛

3) روش استخراج انباره ای[14] ؛

4) روش کند و آکند[15] ؛

5) روش زیربرش و پرکردن[16]؛

6) روش چالهای طولانی موازی[17]

7) روش V.C.R[18]

8) روش استخراج اتاق و پایه [19]

9) روش جبهه کار کوتاه با خاکریزی [20]

10) روش استخراج جبهه کار طولانی[21]

4-3-2-1- روش استخراج بلوکی یا تخریب بزرگ

شرایط عمومی انجام این روش، وجود کانسارهای پرضخامت با دیواره های سخت و کانسنگ نرم است. پس از هر مرحله آتشباری، کانسنگ بطور منظم در تراز پایین تر بازگیری می شود.

این روش یکی از ارزانترین روشهاست؛ ولی با این روش نمی توان در کانسارهای اورانیوم انتخابی عمل نمود و انجام آن در کانسارهای اورانیوم محدود شده است.

4-3-2-2- روش استخراج با احداث طبقات فرعی

این روش که کاربرد بیشتری جهت فلزات پایه توده ای دارد- بعلت رقت زیاد در معادن اورانیوم کمتر بکار گرفته می شود.با این وجود، این روش را نبایستی به راحتی کنار گذاشت، باید توجه داشت که این روش را می توان جهت کانسارهای توده ای[22] و استوک ورکی[23] بکار گرفت؛ بسته به اینکه چگونه بتوانیم روش سنگجوری[24] و کانه آرایی[25] را همسو کنیم.

فهرست مطالب

عنوان ................................................................................................................... صفحه

فصل اول: معرفی مواد پرتو زا

1-1- رادیواکتیو .................................................................................................. 2

1-1-1- اثر شیمیایی ........................................................................................... 2

1-1-2- اثر لومینسانس ( فسفرسانس) .............................................................. 2

1-1-3- اثر یونیزاسیون ..................................................................................... 2

1-2- تاریخچه و کاربرد ..................................................................................... 7

1-2-1- تاریخچه مواد رادیواکتیو....................................................................... 7

1-2-2- کاربرد مواد رادیواکتیو ........................................................................ 7

1-2-2-1- تکنولوژی هسته ای .......................................................................... 7

1-3- شیمی عناصر رادیواکتیو ........................................................................... 12

1-3-1- شیمی اورانیوم ...................................................................................... 12

1-3-2- شیمی توریوم ........................................................................................ 14

1-4- کانی شناسی اورانیوم و توریوم ............................................................... 14

1-4-1- اتونیت ................................................................................................... 14

1-4-2- کارنوتیت ............................................................................................... 15

1-4-3- توربرنیت (کالکولیت) ............................................................................. 15

1-4-4- دیگر کانیهای اورانیوم و توریم ............................................................ 15

1-5- وسایل آشکارسای رادیواکتیو ................................................................... 17

1-5-1- آشکارشازی اشعه به کمک سنتیلومتر ............................................. 17

1-5-2- آشکارسازی رادیواکتیو به کمک شمارنده گایگر ................................. 17

1-5-3- اسپکترومترهای اشعه ....................................................................... 18

1-5-4- روشهای اکتشافی اورانیوم آشکارسازی اشعه ................................ 23

1-5-4-1- امانومتری ........................................................................................ 23

1-5-4-2- ترک اچ ............................................................................................. 23

1-5-4-3- هلیوم متری ...................................................................................... 24

1-5-4-4- اتورادیوگرافی .................................................................................. 24

1-6- معرفی اورانیوم ( خواص و کاربرد ) ........................................................ 25

1-6-1- منشاء و اهمیت خطرات رادیولوژیکی ................................................... 26

1-6-2- محتوی اورانیوم سنگها.......................................................................... 29

1-6-3-1- کنگلومراها ........................................................................................ 31

1-6-3-2- ماسه سنگها ..................................................................................... 32

1-6-3-2-1- کانسارهای پنکوفکوردانت............................................................ 32

1-6-3-2-2- کانسارهای هلالی شکل ............................................................... 34

1-6-3-2-3- کانسارهای استک ........................................................................ 35

1-6-3-3- کانسارهای نوع رگه ای شکل .......................................................... 36

1-6-3-4- کانسارهای رگه ای ماگمایی ............................................................ 38

1-6-3-5- کانسارهای نوع درون ماگمایی ........................................................ 39

1-6-3-6- کانسارهای نوع کالکریت .................................................................. 40

1-6-3-7- سنگهای فسفاتیک اورانیوم دار ........................................................ 41

1-6-3-8- شیلهای سیاه دریایی اورانیوم دار ................................................... 42

فصل دوم :

2-1- کلیات اکتشاف رادیولوژی ......................................................................... 44

2-1-1- اصول فیزیکی اکتشاف اورانیوم به وسیله اندازه گیری تابش گاما....... 44

2-1-2- منتشر کننده های تابش گاما ................................................................. 45

2-1-3- فعل و انفعالات فرآیندهای پراکنش الکترومغناطیسی ............................ 52

2-1-4- تابش گاما از سریهای K40,Th, U............................................................ 54

2-1-5- منابع تابش گاما .................................................................................... 56

2-1-6- تکنیکهای نمایش داده ها ....................................................................... 57

2-2- اصول و مبانی مغناطیس سنجی ................................................................ 61

2-2-1- خواص مغناطیسی سنگها و کانیها ........................................................ 61

2-2-2- مغناطیس زمین....................................................................................... 63

2-3- اندازه گیریهای مغناطیسی هوا برد............................................................. 64

2-3-1- اندازه گیریهای مغناطیسی هوابرد......................................................... 64

2-3-2- اجزاء دستگاههای اساسی در مگنتومتری هوایی ................................ 65

2-3-3- نصب سیستم آشکارساز....................................................................... 65

2-3-4- ثبت خروجی و آشکار ساز ................................................................... 67

2-3-5- روش اندازه گیری ................................................................................ 67

2-3-6- پردازش داده ها .................................................................................... 70

2-3-7- تفسیر نتایج ........................................................................................... 71

2-3-8- فایده و محدودیتهای روش مغناطیسی هوایی ....................................... 73

2-3-9- قابلیتهای اجرایی روش مغناطیسی هوایی ............................................. 74

فصل سوم : اکتشاف اورانیوم در ایران

3-1- تاریخچه سازمان انرژی اتمی ایران .......................................................... 77

3-2- فعالیتهای انجام شده در زمینه اکتشاف اورانیوم در ایران ....................... 77

3-2-1- منطقه ساغند ......................................................................................... 77

3-2-2- منطقه گچین (بندرعباس) ....................................................................... 78

3-2-3- منطقه انارک .......................................................................................... 79

3-2-3-1- ناحیه کالیکافی .................................................................................. 79

3-2-3-2- ناحیه طالمسی .................................................................................. 79

3-2-4- منطقه جاموزیان ................................................................................... 79

3-2-5- منطقه عروسان ..................................................................................... 79

فصل چهارم : معدنکاری اورانیوم

4-1- معدنکاری اورانیوم .................................................................................... 81

4-2- خصوصیات معدنکاری اورانیوم ............................................................... 81

4-3- روشهای معدنکاری اورانیوم .................................................................... 82

4-3-1- روش استخراج روباز ........................................................................... 82

4-3-1-1- ایمنی رادیولوژیکی در معادن روباز اورانیوم ................................. 83

4-3-2- روشهای استخراج زیرزمینی ................................................................ 84

4-3-2-1- روش استخراج بلوکی یا تخریب بزرگ ............................................ 85

4-3-2-2- روش استخراج با احداث طبقات فرعی ............................................. 85

4-3-2-3- روش استخراج انباره ای ................................................................. 85

4-3-2-4- روش استخراج کند و آکند ............................................................... 86

4-3-2-5- روش زیربرش و پرکردن ................................................................ 86

4-3-2-6- روش استخراج چالهای طولانی و موازی ........................................ 86

4-3-2-7- روش استخراج V.C.R......................................................................... 87

4-3-2-8- روش استخراج اتاق و پایه ............................................................... 87

4-3-2-9- روش جبهه کار کوتاه با خاکریزی .................................................. 88

4-3-2-10- روش استخراج جبهه کار طولانی .................................................. 88

فصل پنجم : فرآیند آماده سازی سنگ معدن استخراج شده

5-1- آماده سازی سنگ معدن ........................................................................... 90

5-1-1- سیلو ...................................................................................................... 90

5-1-2- سنگ شکن فکی ..................................................................................... 90

5-1-3- سنگ شکن مخروطی ............................................................................. 90

5-1-4- الک متحرک نوسانی .............................................................................. 90

5-1-5- آسیاب گلوله ای دوار ........................................................................... 91

5-1-6- جداکننده مغناطیسی .............................................................................. 91

5-1-7- تیکنر ...................................................................................................... 91

5-3- استخراج اورانیم از سنگ معدن ................................................................ 91

5-2-1- فرایند لیچینگ ........................................................................................ 91

5-2-1-1- متغیرهای فرآیند .............................................................................. 93

5-2-1-1-1- اندازه سنگ معدن ........................................................................ 93

5-2-1-1-2- غلظت اسید .................................................................................. 93

5-2-1-1-3- اکسیداسیون ................................................................................ 94

5-2-1-1-4- درجه حرارت و زمان عملیات ..................................................... 94

5-2-1-1-5- وزن مخصوص و گرانروی ........................................................ 95

5-2-2- جداسازی جامد – مایع .......................................................................... 95

5-3- خالص سازی و تغلیظ ............................................................................... 96

5-3-1- استخراج با حلال ................................................................................... 97

5-3-2- تبادل یونی با رزین ............................................................................... 101

5-4- رسوب گیری ............................................................................................. 103

5-5- آبگیری و کلینه کردن ................................................................................ 104

5-6- اطلاعات مربوط به مصرف مواد شیمیایی درکارخانه نیمه صنعتی .......... 105

فصل ششم: مشخصات وخصوصیات دستگاهها

6-1- سیلو ........................................................................................................... 111

6-2- سنگ شکن فکی .......................................................................................... 112

6-3- تسمه نقاله .................................................................................................. 113

6-4- سنگ شکن مخروطی ................................................................................. 113

6-5- الکهای متحرک نوسانی .............................................................................. 114

6-6- آسیاب گلوله ای دوار ................................................................................ 115

6-7- طبقه بندی گننده مارپیچی .......................................................................... 117

6-8- جدا کننده مغناطیسی................................................................................... 119

6-9- تیکنر .......................................................................................................... 121

6-10- مخازن لیچینگ ......................................................................................... 122

6-11- صافی بشکه ای ....................................................................................... 123

6-12- سانتریفیوژ .............................................................................................. 124

6-13- مخلوط کننده وجدا کننده ........................................................................ 126

6-14- جریان سنج ............................................................................................. 127

6-15- رسوب دهنده .......................................................................................... 129

6-16- کوره ........................................................................................................ 129

فصل هفتم : نقش آزمایشگاه ها در فرآیند تغلیظ

7-1- آزمایشگاه فرآیند لیچینگ ........................................................................... 131

7-2- آزمایشگاه فرآیند خالص سازی و تغلیظ ................................................... 132

7-2-1- استخراج با حلال ................................................................................... 132

7-2-2- استخراج با تبادل یونی توسط رزین ..................................................... 134

7-3- آزمایشگاه فرایند رسوب گیری ................................................................. 134

7-4- آزمایشگاه تجزیه و تحلیل مواد ................................................................. 135

فصل هشتم : آماده سازی محصول جهت استفاده در راکتورها و تولید برق.. 138




خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید

طرح پاداش افزایش تولید (آکورد)

جمعه 28 آبان 1395

طرح پاداش افزایش تولید (آکورد)

معرفی کارخانه:

کارخانه تولیدی ادوات کشاورزی قربان محمدزاده و پسران در کیلومتر 5 جاده قوچان- روبروی اکسیژن خوراکیان واقع می باشد. مالکیت این واحد متعلق به سه برادر می باشد.تولیدات این کارخانه به ساخت گاوآهن و قطعات یدکی آن محدود میشود که در 12 نوع و سایز طراحی و تولید می شود و 60 نفر کارگر تولیدی و 7 نفر کارمند اداری در این واحد مشغول به فعالیت می باشند. دفتر فروش کارخانه مزبور در چهارراه ابوطالب واقع شده است و در تولید گاوآهن دارای پیشینه ای 80 ساله می باشند. فروش محصولات نیز بصورت داخلی و صادراتی (به کشورهای پاکستان- سوریه- افغانستان و ....) می باشد.

فرآیند تولید:

روند تولید بصورت انبوه و پیوسته می باشد و بدلیل وجود بازاری با ظرفیت کافی و مناسب- محصولات کارخانه معمولا پیش فروش شده و نگرانی از بابت عدم فروش محصولات وجود ندارد. بهمین دلیل لزومی برای در نظر گرفتن ساختمانی جهت انبار محصولات ساخته شده وجود ندارد. محصولات در 8 دایره تولید می شوند.

دایره اول: برشکاری

اولین دایره تولیدی- برشکاری می باشد که در این دایره مواد اولیه ای از قبیل ورق آهن و تسمه و قوطی بوسیله هواگاز- برش خورده و جهت استفاده در دوایر بعدی آماده می گردد. لازم به ذکر است برای برش از دستگاهی استفاده می شود که توسط خود مالکین طراحی و ساخته شده است که تکنولوژی آن مربوط به 50 سال پیش است. بهمین دلیل از بازدهی بسیار پایینی برخوردار است که باعث اتلاف وقت و در نتیچه از کارافتادگی دوایر دیگر می شود. این دایره یکی از مشکلات اساسی روند تولید این کارخانه می باشد.

دایره دوم: کوره و چکش کاری

برخی قطعات برش خورده جهت استحکام بیشتر در یک درجه حرارت مشخص در کوره گرم می شود و سپس توسط ماشین چکش کاری- فرآیند استحکام بخشی به قطعات کامل می شود. سپس قطعات مورد نظر درون آب قرار می گیرد. در این دایره 3 عدد کوره گازوئیل سوز و یک دستگاه چکش وجود دارد.

دایره سوم: پرسکاری

قطعات آماده شده توسط دایره کوره و برخی دیگر از قطعات که در دایره برش آماده گردیده است- جهت پرس و شکل گیری به این دایره انتقال می یابند. لازم به ذکر است تعداد دستگاه های پرس موجود در این دایره زیاد بوده و تعداد زیادی از آنها مورد استفاده قرار نمی گیرد.

دایره چهارم: سوراخکاری

در این دایره برخی از قطعات که جهت اتصال به بدنه اصلی گاوآهن احتیاج به پیچ شدن دارند- عملیات سوراخکاری روی این قطعات انجام می شود. در این دایره 5 دستگاه دریل در سایزهای مختلف وجود دارد.

دایره پنجم: جوشکاری

بعضی قطعات جهت اتصال قوی تر- لازم است بوسیله جوش به یکدیگر متصل شوند که در نهایت منجر به تولید بدنه اصلی گاوآهن می شوند.

دایره ششم: فرچه کاری و تمیزکاری

در این دایره قطعات جوشکاری شده جهت تمیزکاری و مسطح کردن ناهمواری ها و از بین بردن قسمتهای زاید توسط فرچه برقی- عملیات انجام می شود.

دایره هفتم: نقاشی

در این دایره قطعات ساخته شده در دوایر مذکور- رنگ آمیزی می شوند و سپس جهت پخته شدن در کوره ای مخصوص حرارت می بینند.

دایره هشتم: مونتاژ

این دایره که دایره نهایی می باشد تمام قطعات آماده شده در دوایر دیگر- بر روی بدنه اصلی بوسیله پیچ و مهره و بمنظور تشکیل محصول نهایی- متصل می شوند.

مشکلات موجود:

الف) لازم به ذکر است که در خط تولیدی این کارخانه هیچگونه تفکیکی جهت جداسازی دوایر مختلف وجود ندارد و همجنین دوایر مذکور از جهت ترتیب چیدمان در وضعیت نامطلوب قرار دارد که این مشکل پیامدهای زیر را بدنبال دارد:

1) حمل و نقل مواد بین دوایر- وقت گیر و پرهزینه می باشد.

2) موجودی کالای نیمه ساخته در دوایر بالا می باشد و نیاز به سرمایه در گردش بیشتر می باشد و علت آن طولانیتر بودن زمان تولید است.

3) برنامه ریزی و کنترل تولید- پیچیده است.

4) نیاز بیشتری به تجهیزات حمل و نقل متحرک مثل لیفتراک وجود دارد.

نوع فایل:word

سایز : 216 KB

تعداد صفحه : 15



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: پاداش، افزایش، تولید، (آکورد)

تولید ناب

جمعه 28 آبان 1395

تولید دستی

یک تولیدگر دستی از کارگران بسیار ماهر و ابزارهای ساده اما انعطاف پذیر استفاده می کند تا دقیقا آنچه را بسازد که مشتری میخواهد. یعنی یک واحد در یک زمان برخی مشخصه های تولید دستی عبارتند از:

1 - وجود نیروی کاری ماهر;

2 - وجود سازماندهی بسیار غیرمتمرکز;

3 - به کارگیری ابزارآلات ماشینی چندکاره ;

4 - حجم بسیار پایین تولید.

همچنین از ضعفهای تولید دستی این است که قیمت محصول بالا بوده و در صورت افزایش حجم تولید، قیمت پایین نمی آید. (امروزه در مورد ماهواره ها و سفینه های فضایی که برجسته ترین تولیدات دستی هستند همین مشکل وجود دارد).

از مشکلات دیگر تولیدکنندگان دستی این است که معمولا فاقد آن سرمایه مالی وانسانی کافی هستند که به دنبال نوآوریها و پیشرفتهای اساسی باشند چرا که پیشرفت واقعی در دانش فنی مستلزم تحقیق و پژوهش سازمان یافته است .

اما بااین حال محصولات دستی و سفارشی همچنان بازار خود را حفظ کرده است چرا که برخی از مشتریان نیازها و سلیقه های خاصی دارند که فقط این شیوه تولیدی پاسخگوی نیازهای آنهاست . اما در دهه 1990 برای شرکتهای تولیدکننده دستی ، تهدیددیگری از جانب شرکتهای تولیدکننده ناب ، به ویژه شرکتهای ژاپنی آغاز شده است و آن تهدید این است که تولیدگران ناب در تعقیب آن بخشی از بازار هستند که تاکنون درانحصار تولیدگران دستی بوده است . برای مثال ، شرکت هوندا با اتومبیلهای ورزشی (NS-x) با بدنه آلومینیومی خود حمله مستقیمی به بازار خودروهای ورزشی (FERRARI) کرده است .

تولید انبوه

تولیدگر انبوه در طراحی محصولات از متخصصان ماهر استفاده می کند، اما این محصولات توسط کارگران غیرماهر ساخته می شوند که ماشین آلات گران و تک منظوره راهدایت می کنند. این محصولات همشکل ماشینی ، در حجم بسیار بالا تولید می شوند. ازآنجا که تولید محصول جدید محتاج تغییر کل سیستم است ، بسی گرانتر از محصول قبلی خواهد شد. از این رو تولیدکننده انبوه تا جایی که ممکن باشد، از نوآوری در طرح خودداری می کند. در نتیجه اینکه محصول ، به قیمت از دست رفتن تنوع و به دلیل وجودروشهای کاری که برای کارکنان کسالت بار است ، ارزانتر در اختیار خریدار قرار می گیرد.برخی از مشخصه های تولید انبوه عبارتند از:



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: تولید، ناب

پروسه تولید سنگ

جمعه 28 آبان 1395

پروسه تولید سنگ

مقدمه :

پروسه تغییر شکل، ریختها و ترکیبهای مختلفی از سنگها را در مقیاسهای متفاوت ایجاد می کند. در یک سمت کوههای عظیم کره زمین قرار دارند و در سوی دیگر تنشهای موضعی باعث ایجاد ترکهای بسیار ریز در سنگ کف می گردد. از تمام این پدیده ها تحت عنوان «ساختارهای سنگی» یاد می شود. زمانی که یک مطالعه در منطقه انجام می پذیرد، زمین شناسی ساختار غالب را تشخیص و توصیف می نماید. یک ساختار معمولاً آنقدر عظیم است که فقط قسمت بسیار کوچکی از آن توسط یک بیننده، قابل مشاهده است. اغلب موارد، بیشتر سنگ کف توسط نباتات و یا رسوبات اخیر پنهان شده است. در نتیجه تهیه ساختار زمین شناسی باید بر اساس رخ نمودهای بسیار محدود که شامل مکانهایی است که کف سنگی در سطح زمین نمایان می باشد، انجام پذیرد. برخلاف تمام این مشکلات، برخی تکنیکهای ترسیم زمین شناسان را قادر به شناخت ساختارهای کنونی می سازد. در سالهای اخیر، این مسیر با کمک عکس برداری هوایی، تصویربرداری ماهواره ای و توسعه سیستم مکانیابی جهانی (GPS) هموارتر گردیده است. علاوه بر این تهیه پروفیل زمین با روش انعکاس لرزه ای و نیز حفر گمانه ها، در مورد ترکیب و ساختار سنگهای در عمق داده های زیادی را فراهم می نماید.

تعریف :

گسل ها عبارت از شکستگی هایی هستند که در آنها، سنگهای

طرفین صفر شکستگی، به موازات این صفحه لغزش پیدا

می کنند و به کمک همین مشخصه، می توان آنها را از درزه ها

تشخیص داد. لغزش گسل ها در انواع مختلف متفاوت است.

از چند میلیمتر تا چندین کیلومتر تغییر می کند.

در بعضی موارد، یک گسله به صورت مجزا دیده می شود ولی در پاره ای حالات، چندین گسله موازی و نزدیک به هم دیده می شوند که به نام منطقه گسله نامیده می شوند. گاهی نیز بدون این که یک شکستگی مشخص در سنگها دیده شود، سنگها نسبت به هم تغییر مکان می یابند که منطقه بین آنها، به نام منطقه برش موسوم است.

مشحصه های گسله ها

مهمترین مشخصه های گسله ها به شرح زیر است:

امتداد گسل:

از آنجا که در بسیاری حالات، صفحه گسل یک سطح مستوی و یا حداقل در منطقه مورد مطالعه ، به حالت مستوی است، لذا شیب و امتداد صفحه گسل را همانند شیب و امتداد طبقات اندازه گیری می نمایند. در حالت کلی، امتداد گسل، امتداد یک خط افقی در سطح گسل است، که مقدار آن نسبت به شمال بیان می شود

شیب گسل

زاویه بین سطح افق و سطح گسل را شیب گسل می نامند. در این رابطه متمم زاویه شیب به نام هید (Hade از زاویه بین) تعریف می شود.

زاویه ریک یا پیچ:

این زاویه عبارتست از زاویه بین خطی که اثر حرکت گسل را در روی صفحه آن نشان می دهد با خط افقی که در صفحه گسل قرار دارد.

نوع فایل:word

سایز :11.3 KB

تعداد صفحه :12



خرید فایل



برای دیدن ادامه مطلب اینجا را کلیک کنید
برچسب‌ها: پروسه، تولید، سنگ
( تعداد کل: 1410 )
   1       2       3       4       5       ...       94    >>